Сравнения, система вычетов, решение линейных систем по модулю — различия между версиями
Bochkarev (обсуждение | вклад) (→Решение линейных систем по модулю) |
Bochkarev (обсуждение | вклад) (→Китайская теорема об остатках) |
||
Строка 34: | Строка 34: | ||
== Решение линейных систем по модулю == | == Решение линейных систем по модулю == | ||
== Китайская теорема об остатках == | == Китайская теорема об остатках == | ||
+ | |||
+ | Пусть <tex> n = n_1 n_2 \ldots n_k </tex>, где <tex> n_i </tex> - попарно взаимно простые числа. Рассмотрим соответствие <tex> a \rightarrow (a_1 , a_2 , \ldots , a_k) </tex>, где <tex> a_i = a(mod \text{ }n)</tex>. | ||
== Теорема Ферма == | == Теорема Ферма == |
Версия 03:31, 4 октября 2010
Содержание
Сравнения по модулю
Будем рассматривать целые числа в связи с остатками от деления их на данное целое число m, которое назовем модулем.
Каждому целому числу отвечает определенный остаток от деления его на m. Если двум целым a и b отвечает один и тот же остаток r, то они называются сравнимыми по модулю m.
Сравнимость для a и b записывается так :
Сравнимость чисел a и b по модулю m равносильна:
- 1. Возможности представить a в форме , где t - целое.
- 2. Делимости на m.
Арифметика сравнений
Свойства сравнений
- 1. Два числа, сравнимые с третьим сравнимы между собой.
- 2. Сравнения можно почленно складывать.
- 3. Сравнения можно почленно перемножать.
- 4. Обе части сравнения можно разделить на их общий делитель, если последний взаимно прост с модулем.
- 5. Обе части сравнения можно умножить на одно и тоже число.
- 6. Обе части сравнения и модуль можно разделить на их общий делитель.
- 7. Если сравнение НОК этих модулей. имеет место по нескольким модулям, то оно имеет место и по модулю равному
- 8. Если сравнение имеет место по модулю m, то оно имеет место и по модулю d, равному любому делителю числа m.
- 9. Если одна часть сравнения и модуль делятся на некоторое число, то и другая сторона сравнения должна делится на это число.
- 10. Если , то .
Полная и приведенная система вычетов
Числа равноостаточные(сравнимые по модулю m) образуют класс чисел по модулю m.
Из такого определения следует, что всем числам класса отвечает один остаток r, и мы получим все числа класса,
если в форме
Любое число класса называется вычетом по модулю m. Вычет получаемый при , равный самому остатку r,
называется наименьшим неотрицательным вычетом.
Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.
Согласно 10-му свойству сравнений, числа одного класса по модулю m имеют одинаковый НОД. Особенно важны классы, содержащие числа, взаимно простые с модулем. Взяв вычет от каждого такого класса, получим приведенную систему вычетов по модулю m.
Решение линейных систем по модулю
Китайская теорема об остатках
Пусть
, где - попарно взаимно простые числа. Рассмотрим соответствие , где .Теорема Ферма
, где p — простое. Доказательство.
- 1. , тогда, очевидно, .
- 2. Рассмотрим случай a не кратного p. Рассмотрим приведенную систему вычетов .
Система
задает те же вычеты, только в другом порядке, таким образом , сократив лишнее, получаем . Домножив обе части на a, получим теорему в изначально представленном виде.Теорема Вильсона
p — простое
Доказательство:- Если p — не простое, тогда (кроме ),но -1, в любом случае, мы не получим.