Теорема Бейкера — Гилла — Соловэя — различия между версиями
Komarov (обсуждение | вклад) м |
(→Теорема) |
||
Строка 37: | Строка 37: | ||
В начале каждой итерации определимся с тем, с какой длиной слова <tex>n_i</tex> мы будем работать. Для <tex>n_i</tex> должны быть выполнены три условия: | В начале каждой итерации определимся с тем, с какой длиной слова <tex>n_i</tex> мы будем работать. Для <tex>n_i</tex> должны быть выполнены три условия: | ||
* <tex>2^{n_i} > T(M_i, (1)^{n_i})</tex> (это ограничение может быть достигнуто, так как мы исследуем только полиномиальные программы) | * <tex>2^{n_i} > T(M_i, (1)^{n_i})</tex> (это ограничение может быть достигнуто, так как мы исследуем только полиномиальные программы) | ||
− | * <tex>n_i > n_{i-1}</tex> | + | * <tex>n_i > n_{i-1}</tex> (слово должно быть длиннее, чем слово, с которым мы работали на предыдущем шаге) |
− | * <tex>n_i > \max\limits_{s \in B} |s|</tex> (это ограничение может быть достигнуто, так как в множестве <tex>B</tex> всегда конечное число элементов) | + | * <tex>n_i > \max\limits_{s \in B} |s|</tex>, где <tex>B</tex> {{---}} текущая версия множества, которое мы строим (это ограничение может быть достигнуто, так как в множестве <tex>B</tex> всегда конечное число элементов) |
Затем запустим программу <tex>M_i</tex> на слове <tex>(1)^n</tex>. Каждый раз, когда она будет обращаться к оракулу для множества <tex>B</tex>, будем делать следующее: | Затем запустим программу <tex>M_i</tex> на слове <tex>(1)^n</tex>. Каждый раз, когда она будет обращаться к оракулу для множества <tex>B</tex>, будем делать следующее: | ||
Строка 44: | Строка 44: | ||
* в противном случае отвечаем <tex>REJECT</tex> | * в противном случае отвечаем <tex>REJECT</tex> | ||
− | Если программа отработала и решила, что слово <tex>(1)^n</tex> принадлежит языку <tex>U_B</tex>, ничего делать не надо: ни одного слова длины <tex>n</tex> в языке <tex>B</tex> нет, и никогда не появится (из-за второго | + | Если программа отработала и решила, что слово <tex>(1)^n</tex> принадлежит языку <tex>U_B</tex>, ничего делать не надо: ни одного слова длины <tex>n</tex> в языке <tex>B</tex> нет (из-за третьего требования к длине обрабатываемых слов), и никогда не появится (из-за второго требования к длине обрабатываемых слов). |
В противном случае, необходимо найти такое слово длины <tex>n</tex>, о котором программа <tex>M_i</tex> не спрашивала оракул (оно всегда существует из-за первого требования к длине обрабатываемых слов: программа просто не успела бы спросить обо всех словах длины <tex>n</tex>), и добавить это слово в множество <tex>B</tex>. После этого все слова длины <tex>n</tex> автоматически добавятся в язык <tex>U_B</tex>, и программа <tex>M_i</tex> не будет верно распознавать этот язык (она будет неверно работать на слове <tex>(1)^n</tex>). | В противном случае, необходимо найти такое слово длины <tex>n</tex>, о котором программа <tex>M_i</tex> не спрашивала оракул (оно всегда существует из-за первого требования к длине обрабатываемых слов: программа просто не успела бы спросить обо всех словах длины <tex>n</tex>), и добавить это слово в множество <tex>B</tex>. После этого все слова длины <tex>n</tex> автоматически добавятся в язык <tex>U_B</tex>, и программа <tex>M_i</tex> не будет верно распознавать этот язык (она будет неверно работать на слове <tex>(1)^n</tex>). |
Версия 20:00, 5 июня 2013
Теорема
Теорема: |
Существуют такие оракулы и , что и . |
Доказательство: |
Существование оракула Рассмотрим PS-полный язык .
Следовательно, Существование оракула Пусть — произвольное множество, а . Ясно, что выполнено (сертификатом будет слово нужной длины из ). Построим такое множество , что .Пронумеруем все полиномиальные программы, получим последовательность . Множество будем строить итеративно, на очередной итерации номер делая так, что программа не распознает множество .В начале каждой итерации определимся с тем, с какой длиной слова мы будем работать. Для должны быть выполнены три условия:
Затем запустим программу на слове . Каждый раз, когда она будет обращаться к оракулу для множества , будем делать следующее:
Если программа отработала и решила, что слово В противном случае, необходимо найти такое слово длины принадлежит языку , ничего делать не надо: ни одного слова длины в языке нет (из-за третьего требования к длине обрабатываемых слов), и никогда не появится (из-за второго требования к длине обрабатываемых слов). , о котором программа не спрашивала оракул (оно всегда существует из-за первого требования к длине обрабатываемых слов: программа просто не успела бы спросить обо всех словах длины ), и добавить это слово в множество . После этого все слова длины автоматически добавятся в язык , и программа не будет верно распознавать этот язык (она будет неверно работать на слове ). |
Следствие
Утверждение: |
Если существует решение вопроса равенства и , то оно не должно «релятивизоваться». |
Для доказательства строгого включения классов часто используется метод диагонализации. Однако утверждения, полученные при помощи данной техники, могут быть «релятивизованы». То есть при «разрешении» машине Тьюринга доступа к оракулу некоторого языка доказанное соотношение классов сохраняется. Однако соотношение
и не должно «релятивизоваться» по теореме Бейкера-Гилла-Соловэя, следовательно, метод диагонализации не применим для решения этого вопроса.