|
|
Строка 143: |
Строка 143: |
| == Теоремы о множестве значений оператора == | | == Теоремы о множестве значений оператора == |
| {{TODO|t=придумать нормальный заголовок}} | | {{TODO|t=придумать нормальный заголовок}} |
− | <wikitex>
| |
− | Следующие две теоремы — условие разрешимости операторных уравнений. Смысл: $Ax = y$, $y$ — дано, то ответ на вопрос, есть ли решение, состоит в проверке $y \in R(A)$, но можно ограничиться $R(A) = \operatorname{Cl} R(A) \implies R(A) = (\operatorname{Ker}A^*)^\bot$, сопряженный оператор можно построить, ядро поддается конструктивному описанию: $y \in R(A) \iff y \perp \operatorname{Ker} A^*$.
| |
| | | |
− | Например, $A: \mathbb{R}^m \to \mathbb{R}^n$, $A^* = A^\top : \mathbb{R}^n \to \mathbb{R}^m$. $R(A) = \operatorname{Cl} R(A)$, $Ax = y$, $y$ — дано. Надо смотреть $y \perp \operatorname{Ker} A^*$, то есть $A^\top y = 0$.
| + | Следующие две теоремы являются наиболее общей формой записи условий разрешимости операторных уравнений. |
| | | |
− | Далее введем класс бесконечномерных операторов, для которых $R(A)$ — замкнуто, в частности, в этот класс входят интегральные операторы.
| + | Смысл: рассмотрим уравнение <tex>Ax = y</tex>, где <tex>y</tex> — дано. Для того, чтобы понять, разрешимо ли уравнение, нужно проверить, что <tex>y \in R(A)</tex>. В общем случае, не существует способа это сделать, но можно ограничиться проверкой <tex>R(A) = \operatorname{Cl} R(A) \implies R(A) = (\operatorname{Ker}A^*)^\bot</tex>, сопряженный оператор можно построить, ядро поддается конструктивному описанию: <tex>y \in R(A) \iff y \perp \operatorname{Ker} A^*</tex>. |
| + | |
| + | Например, <tex>A: \mathbb{R}^m \to \mathbb{R}^n</tex>, <tex>A^* = A^\top : \mathbb{R}^n \to \mathbb{R}^m</tex>. <tex>R(A) = \operatorname{Cl} R(A)</tex>, <tex>Ax = y</tex>, <tex>y</tex> — дано. Надо смотреть <tex>y \perp \operatorname{Ker} A^*</tex>, то есть <tex>A^\top y = 0</tex>. |
| + | |
| + | В следующих параграфах мы введем класс бесконечномерных операторов, для которых <tex>R(A)</tex> — замкнуто, в частности, в этот класс входят интегральные операторы. |
| | | |
| | | |
Строка 156: |
Строка 158: |
| |statement= <tex> A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp </tex>. | | |statement= <tex> A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp </tex>. |
| |proof = | | |proof = |
− | $\varphi \in \operatorname{Ker}A^*$, $A^* \varphi = 0$, $\forall x \in E: A^*(\varphi, x) = 0, A^*(\varphi, x) = \varphi(A x) \implies \varphi(A x) = 0$
| + | <tex>\varphi \in \operatorname{Ker}A^*</tex>, <tex>A^* \varphi = 0</tex>. |
| + | |
| + | <tex>\forall x \in E: A^*(\varphi, x) = 0, A^*(\varphi, x) = \varphi(A x) \implies \varphi(A x) = 0</tex> |
| + | |
| + | Пусть <tex>y \in R(A) </tex>, тогда <tex> y = Ax </tex>. |
| | | |
− | $y \in R(A) \implies y = Ax, \varphi \in \operatorname{Ker} A^* \implies \varphi y = \varphi(A x) = 0 \implies R(A)\subset(\operatorname{Ker}A^*)^\perp$
| + | <tex> \varphi y = \varphi(A x) = 0 </tex>, следовательно, <tex> R(A)\subset(\operatorname{Ker}A^*)^\perp</tex>. |
| | | |
− | $y \in \operatorname{Cl} R(A), y = \lim y_n, y_n \in R(A), \varphi \in \operatorname {Ker}^* (A)$ $\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp$ $\implies y \in (\operatorname{Ker}A^*)^\perp \implies(?) y \in \operatorname{Cl}(R(A))$
| + | Теперь, пусть <tex>y \in \operatorname{Cl} R(A)</tex>, тогда <tex> y = \lim y_n, y_n \in R(A)</tex>. |
| | | |
− | Проверим обратное:
| + | <tex>\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \varphi(y) = 0</tex>, и <tex>\operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp</tex> |
− | $y \in (\operatorname{Ker}A^*)^\perp \implies (?) y \in \operatorname{Cl} R(A)$. Пусть это не так: $ y \notin \operatorname{Cl} R(A)$.
| |
| | | |
− | Рассмотрим <tex> F_1 = \{ z + ty \mid z \in \operatorname{Cl}(R(A)), t \in \mathbb{R} \} </tex>. $F_1$ {{---}} линейное множество в силу линейности $\operatorname{Cl}(R(A))$.
| + | Проверим обратное включение: |
| + | <tex>y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl} R(A)</tex>. Пусть это не так: <tex> y \notin \operatorname{Cl} R(A)</tex>. |
| | | |
− | Покажем, что это подпространство $F$.
| + | Рассмотрим <tex> F_1 = \{ z + ty \mid z \in \operatorname{Cl}(R(A)), t \in \mathbb{R} \} </tex>. <tex>F_1</tex> {{---}} линейное множество в силу линейности <tex>\operatorname{Cl}(R(A))</tex>. |
| | | |
− | $\operatorname{Cl}(F_1) = F_1 ?$.
| + | Покажем, что <tex>F_1</tex> -- подпространство <tex>F</tex>. |
| | | |
− | Проверим: $z_т+t_{n}y \to u \implies (?) u \in F_1$, т.е. $u = z + ty$. | + | Проверим сначала замкнутость <tex>F_1</tex>: |
| | | |
− | Если $\mid t_{n}\mid <= const \implies$ выберем $t_{n_k}$, стремящееся к какому-то $t$. Из $z_n+t_{n}y \to u, t_{n_k}y \to ty \implies z_n \to z \in \operatorname{Cl}(F_1)$.
| + | Пусть <tex>z_n+t_{n}y \to u = z + ty</tex>, хотим убедиться в том, что <tex>u \in \operatorname{Cl} R(F_1)</tex>. |
| | | |
− | $z_{n_k}+t_{n_k}y \to z+ty$ и $z_{n_k}+t_{n_k}y \to z+ty \implies u = z+ty$.
| + | Если <tex> |t_{n}| \le const </tex>, то выберем <tex>t_{n_k}</tex>, стремящееся к какому-то <tex>t</tex>. Из <tex>z_n+t_{n}y \to u, t_{n_k}y \to ty </tex> получаем <tex> z_n \to z \in \operatorname{Cl}(F_1)</tex>. |
| | | |
− | Если допустить, что $t_{n_k} \to \infty$: | + | Если допустить, что <tex>t_{n_k} \to \infty</tex>: |
| | | |
− | $z_{n_k}+t_{n_k}y \to u$. $z_{n_k}/t_{n_k} + y \to 0 \implies z_{n_k}/t_{n_k} \to -y \implies -y \in \operatorname{Cl}(R(A)) \implies y \in \operatorname{Cl}(R(A))$ {{---}} противоречие. $\operatorname{Cl}(F_1) = F_1$.
| + | <tex>z_{n_k}+t_{n_k}y \to u</tex>. <tex>z_{n_k}/t_{n_k} + y \to 0 \implies z_{n_k}/t_{n_k} \to -y \implies -y \in \operatorname{Cl}(R(A)) \implies y \in \operatorname{Cl}(R(A))</tex> {{---}} противоречие. |
| | | |
− | Построим на $F_1$ фунционал $\varphi_0 : \varphi_0(z+ty) = t \implies \varphi_0(z) = 0$ {{---}} функционал, обнуляющийся на $\operatorname{Cl}(R(A))$. Он очевидно непрерывен, по теореме Хана-Банаха с сохранением напрерывности его можно продолжить на $F: \widetilde{\varphi} \in F^*$.
| + | Таким образом, <tex>\operatorname{Cl}(F_1) = F_1</tex>. |
| | | |
− | $\widetilde{\varphi}\mid _{F_1} = \varphi_0$
| + | Построим на <tex>F_1</tex> фунционал <tex>\varphi_0 : \varphi_0(z+ty) = t </tex>, <tex> \varphi_0(z) = 0</tex>. Этот функционал обнуляется на <tex>\operatorname{Cl}(R(A))</tex>. |
| | | |
− | $\forall y \in \operatorname{Cl}(R(A)): \varphi_0(y) = 0$.
| + | Он, очевидно, непрерывен, а по теореме Хана-Банаха с сохранением напрерывности его можно продолжить на <tex>F: \widetilde{\varphi} \in F^*</tex>. |
| | | |
− | C другой стороны $\varphi_0(y) = 1$ {{---}} противоречие, т.к. $y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl}(R(A))$
| + | <tex>\widetilde{\varphi}\mid _{F_1} = \varphi_0</tex> |
| | | |
− | {{TODO|t=Проверьте, я сам не уверен, особенно в доказательстве $\operatorname{Cl}(F_1) = F_1$ там как-то не оч}} | + | <tex>\forall y \in \operatorname{Cl}(R(A)): \widetilde{\varphi_0}(y) = 0</tex>. |
| + | |
| + | C другой стороны, <tex> \widetilde{\varphi_0}(y) = 1</tex> {{---}} противоречие, т.к. <tex>y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl}(R(A))</tex>. |
| | | |
| }} | | }} |
Строка 205: |
Строка 213: |
| Рассмотрим <tex>f \in (\operatorname{Ker}A )^\perp</tex>, если <tex>Ax=0</tex>, то <tex>f(x)=0</tex>. Теперь надо показать, что <tex>f \in R(A^*)</tex>, т.е. проверить, что <tex>f = \varphi A^*</tex>. {{TODO | t = Далее творится какой-то ад с использованием т. Х-Б, кто прошаренный в матане, напишите пожалуйста, особенно про факторизацию}} | | Рассмотрим <tex>f \in (\operatorname{Ker}A )^\perp</tex>, если <tex>Ax=0</tex>, то <tex>f(x)=0</tex>. Теперь надо показать, что <tex>f \in R(A^*)</tex>, т.е. проверить, что <tex>f = \varphi A^*</tex>. {{TODO | t = Далее творится какой-то ад с использованием т. Х-Б, кто прошаренный в матане, напишите пожалуйста, особенно про факторизацию}} |
| }} | | }} |
− |
| |
− | </wikitex>
| |
Эта статья находится в разработке!
Все рассматриваемые далее пространства считаем Банаховыми.
Определение: |
[math] E^* [/math] — множество линейных непрерывных функционалов над [math] E [/math], его называют пространством, сопряженным к [math] E [/math].
Аналогично, [math] E^{**} [/math] — пространство, сопряженное к [math] E^* [/math]. |
Естественное вложение
Покажем, что между [math] E [/math] и [math] E^{**} [/math] существует так называемый естественный изоморфизм, сохраняющий норму точки.
Введем [math] F_x [/math] следующим образом: [math]\forall x \in E : F_x (f) = f(x), f \in E^{*} [/math].
[math] F_x : E^{*} \to \mathbb{R} [/math] — функционал, заданный на [math]E[/math], то есть [math] F_x \in E^{**} [/math].
Тогда само [math] F [/math] отображает [math] E [/math] в [math] E^{**} [/math].
[math] F [/math] линейно: [math] F_{\alpha x_1 + \beta x_2} = \alpha F_{x_1} + \beta F_{x_2} [/math].
[math] | F_x(f) | = |f(x)| \le \| f \| \| x \| [/math], откуда [math] \| F_x \| \le \| x \| [/math].
С другой стороны, по теореме Хана-Банаха, [math] \forall x_0 \in E, \exists f_0 \in E^* [/math], что выполняются два условия:
- [math] f_0(x_0) = \| x_0 \| [/math]
- [math] \| f_0 \| = 1 [/math].
[math] | F_{x_0} (f_0) | = f_0 (x_0) = \| x_0 \|, \| f_0 \| = 1 [/math], потому получаем, что [math] \| F_{x_0} \| \ge \| x_0 \| \implies \| F_{x_0} \| = \| x_0 \| [/math].
Значит, получившееся преобразование [math] x \mapsto F_x [/math] — изометрия, [math] \| x \| = \| F_x \| [/math], получили естественное вложение [math] E [/math] в [math] E^{**} [/math].
[math] E [/math] называется рефлексивным, если [math] E [/math] будет совпадать с [math] E^{**} [/math] при таком отображении.
Например, гильбертово пространство [math] H [/math] рефлексивно (следует из теоремы Рисса об общем виде линейного функционала).
[math] C[0, 1] [/math] — не является рефлексивным.
Сопряженный оператор
Пусть оператор [math] A [/math] действует из [math] E [/math] в [math] F [/math], и функционал [math] \varphi [/math] принадлежит [math] F^* [/math].
Рассмотрим [math] f(x) = \varphi (Ax), | f(x) | \le \| \varphi \| \| A \| \| x \| [/math].
Получили новый функционал [math] f [/math], принадлежащий [math] E^* [/math]. [math] \varphi \mapsto \varphi A [/math].
[math] \varphi A = A^* (\varphi), A^* : F^* \to E^* [/math]. [math] A^* [/math] — сопряженный оператор к [math] A [/math].
Теорема: |
Если [math] A [/math] — линейный ограниченный оператор, то [math] \| A^* \| = \| A \| [/math]. |
Доказательство: |
[math]\triangleright[/math] |
Возьмем [math] x \in E, \varphi \in F^* [/math].
[math] | A^* (\varphi, x) | = | \varphi (Ax) | \le \| A \| \| \varphi \| \| x \| [/math].
Получили, что [math] \| A^* (\varphi) \| \le \| A \| \| \varphi \| [/math], откуда [math] \| A^* \| \le \| A \| [/math].
Для доказательства в обратную сторону используем следствие из теоремы Хана-Банаха:
По определению нормы: [math] \forall \varepsilon \gt 0 \, \exists x: \| x \| = 1 \implies \| A \| - \varepsilon \lt \| Ax \| [/math].
[math] Ax \in F [/math], по следствию из теоремы Хана-Банаха подберем [math] \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| [/math].
[math] \| A^*(\varphi_0, x) \| = | \varphi_0(Ax) | = \| Ax \| \gt \| A \| - \varepsilon [/math].
[math] \| A^*(\varphi_0, x) \| \le \| A^*(\varphi_0) \| \| x \| = \| A^*(\varphi_0) \| \le \| A^* \| \| \varphi_0 \| = \| A^* \| [/math].
Соединяя эти два неравенства, получаем, что [math] \forall \varepsilon \gt 0: \| A^* \| \gt \| A \| - \varepsilon [/math].
Устремляя [math] \varepsilon [/math] к нулю, получаем, что [math] \| A^* \| \ge \| A \| [/math], и, окончательно, [math] \| A^* \| = \| A \| [/math]. |
[math]\triangleleft[/math] |
Примеры сопряженных операторов
Возьмем любое гильбертово пространство [math] H [/math], [math] A : H \to H [/math].
[math] \forall \varphi \in H^* [/math] по теореме Рисса об общем виде линейного функционала в [math] H [/math] существует
[math] z : \varphi (y) = \langle y, z \rangle, \| \varphi \| = \| z \| [/math].
Поскольку [math] x \mapsto \varphi (Ax) [/math] также является линейным функционалом [math] H \to H [/math], то [math] \varphi (Ax) = \langle Ax, z \rangle = \langle x, y \rangle [/math], где [math] y [/math] не зависит от [math] x [/math].
Имеем отображение [math] z \mapsto y [/math], тогда [math] y = A^*(z) [/math], и окончательно:
[math] \langle Ax, z \rangle = \langle x, A^*z \rangle [/math].
В гильбертовом пространстве [math] H [/math] сопряженный оператор — тот оператор, который позволяет писать равенство выше.
Определение: |
Оператор [math] A [/math] в гильбертовом пространстве называется самосопряженным, если [math] A = A^* [/math] |
В случае [math] \mathbb{R}^n [/math] (частный случай [math] H [/math]) оператор [math] A : \mathbb{R}^n \to \mathbb{R}^n [/math] представляет собой матрицу размером [math] n \times n [/math]. Сопряженный к [math] A [/math] оператор получается транспонированием соответствующей матрицы: [math] A^* = A^T [/math]. Для симметричной матрицы [math] A [/math] получается [math] A^* = A^T = A [/math], то есть, если [math] A [/math] — симметричная матрица, то [math] A [/math] — самосопряженный оператор.
Рассмотрим теперь пространство [math] E = L_p [0, 1] [/math].
Пусть [math] K(u, v) : [0, 1] \times [0, 1] \to \mathbb{R} [/math] — непрерывная функция на [math] [0, 1] \times [0, 1] [/math], [math] x \in E [/math].
Интегральный оператор [math] A [/math], действующий из [math] L_p [0, 1] [/math] в [math] L_p [0, 1] [/math] определяется так: [math] A(x, s) = (Ax)(s) = \int\limits_0^1 K(s, t) x(t) dt [/math]. [math] Ax \in E [/math].
Построим сопряженный оператор:
По теореме об общем виде линейного функционала в [math] L_p [/math]
TODO: Ее у нас в курсе не было. Спросить у Додонова, что с ней делать.,
[math] \forall \varphi \in E^*, x \in E: \varphi(x) = \int\limits_0^1 y(t) x(t) dt, y \in L_q [/math], где [math] \frac 1p + \frac 1q = 1 [/math] ([math] p [/math] и [math] q [/math] называются сопряженными показателями).
[math] L_p^* = L_q [/math].
[math] A^*(\varphi, x) = \varphi (Ax) = \int\limits_0^1 y(s) (Ax)(s) ds = \int\limits_0^1 y(s) (\int\limits_0^1 K(s, t) x(t) dt) ds = [/math] (по теореме Фубини поменяем порядок интегрирования) [math] = \int\limits_0^1 ( \int\limits_0^1 K(s, t) y(s) ds) x(t) dt [/math]
Получили, что [math] A^*(\varphi, x) = \int\limits_0^1 ( \int\limits_0^1 K(s, t) y(s) ds) x(t) dt [/math]. Обозначим [math] z(t) = \int\limits_0^1 K(s, t) y(s) ds [/math], тогда [math] A^* (\varphi) \equiv z [/math], аналогично [math] \varphi \equiv y [/math].
[math] A^* [/math] — интегральный оператор из [math] L_q [/math], имеющий ядро [math] K^*(s, t) = K(t, s) [/math]. В частности, если ядро симметрично ([math] K(s, t) = K(t, s) [/math]) и [math] k = 2 [/math], то [math] A = A^* [/math].
Ортогональное дополнение
Важное значение имеет ортогональное дополнение (в любом нормированном пространстве):
Определение: |
Пусть [math] E [/math] — НП, [math] S \subset E^* [/math].
[math] S^{\bot} = \{ x \in E \mid \forall f \in S: f(x) = 0 \} [/math] — ортогональное дополнение [math] S [/math].
Аналогично, если [math] T \subset E [/math], то [math] T^{\bot} = \{ f \in E^* \mid \forall x \in T: f(x) = 0 \} [/math]. |
Утверждение: |
[math] \{ 0 \} = (E^*)^{\bot}, \{ 0 \} = E^{\bot} [/math]. |
[math]\triangleright[/math] |
Оба включения [math] \subset [/math] очевидны по определению. В обратную сторону:
Пусть [math] x \in (E^*)^{\bot} [/math], тогда [math] \forall f \in E^*: f(x) = 0 [/math]
Предположим, что [math] x \neq 0 [/math], тогда по следствию из теоремы Хана-Банаха, [math] \exists f: f(x) = \| x \| \neq 0 [/math], получили противоречие, что [math] x \in (E^*)^{\bot} [/math].
Второе включение в обратную сторону доказывается аналогично. |
[math]\triangleleft[/math] |
Теоремы о множестве значений оператора
TODO: придумать нормальный заголовок
Следующие две теоремы являются наиболее общей формой записи условий разрешимости операторных уравнений.
Смысл: рассмотрим уравнение [math]Ax = y[/math], где [math]y[/math] — дано. Для того, чтобы понять, разрешимо ли уравнение, нужно проверить, что [math]y \in R(A)[/math]. В общем случае, не существует способа это сделать, но можно ограничиться проверкой [math]R(A) = \operatorname{Cl} R(A) \implies R(A) = (\operatorname{Ker}A^*)^\bot[/math], сопряженный оператор можно построить, ядро поддается конструктивному описанию: [math]y \in R(A) \iff y \perp \operatorname{Ker} A^*[/math].
Например, [math]A: \mathbb{R}^m \to \mathbb{R}^n[/math], [math]A^* = A^\top : \mathbb{R}^n \to \mathbb{R}^m[/math]. [math]R(A) = \operatorname{Cl} R(A)[/math], [math]Ax = y[/math], [math]y[/math] — дано. Надо смотреть [math]y \perp \operatorname{Ker} A^*[/math], то есть [math]A^\top y = 0[/math].
В следующих параграфах мы введем класс бесконечномерных операторов, для которых [math]R(A)[/math] — замкнуто, в частности, в этот класс входят интегральные операторы.
Теорема 1
Теорема: |
[math] A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp [/math]. |
Доказательство: |
[math]\triangleright[/math] |
[math]\varphi \in \operatorname{Ker}A^*[/math], [math]A^* \varphi = 0[/math].
[math]\forall x \in E: A^*(\varphi, x) = 0, A^*(\varphi, x) = \varphi(A x) \implies \varphi(A x) = 0[/math]
Пусть [math]y \in R(A) [/math], тогда [math] y = Ax [/math].
[math] \varphi y = \varphi(A x) = 0 [/math], следовательно, [math] R(A)\subset(\operatorname{Ker}A^*)^\perp[/math].
Теперь, пусть [math]y \in \operatorname{Cl} R(A)[/math], тогда [math] y = \lim y_n, y_n \in R(A)[/math].
[math]\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \varphi(y) = 0[/math], и [math]\operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp[/math]
Проверим обратное включение:
[math]y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl} R(A)[/math]. Пусть это не так: [math] y \notin \operatorname{Cl} R(A)[/math].
Рассмотрим [math] F_1 = \{ z + ty \mid z \in \operatorname{Cl}(R(A)), t \in \mathbb{R} \} [/math]. [math]F_1[/math] — линейное множество в силу линейности [math]\operatorname{Cl}(R(A))[/math].
Покажем, что [math]F_1[/math] -- подпространство [math]F[/math].
Проверим сначала замкнутость [math]F_1[/math]:
Пусть [math]z_n+t_{n}y \to u = z + ty[/math], хотим убедиться в том, что [math]u \in \operatorname{Cl} R(F_1)[/math].
Если [math] |t_{n}| \le const [/math], то выберем [math]t_{n_k}[/math], стремящееся к какому-то [math]t[/math]. Из [math]z_n+t_{n}y \to u, t_{n_k}y \to ty [/math] получаем [math] z_n \to z \in \operatorname{Cl}(F_1)[/math].
Если допустить, что [math]t_{n_k} \to \infty[/math]:
[math]z_{n_k}+t_{n_k}y \to u[/math]. [math]z_{n_k}/t_{n_k} + y \to 0 \implies z_{n_k}/t_{n_k} \to -y \implies -y \in \operatorname{Cl}(R(A)) \implies y \in \operatorname{Cl}(R(A))[/math] — противоречие.
Таким образом, [math]\operatorname{Cl}(F_1) = F_1[/math].
Построим на [math]F_1[/math] фунционал [math]\varphi_0 : \varphi_0(z+ty) = t [/math], [math] \varphi_0(z) = 0[/math]. Этот функционал обнуляется на [math]\operatorname{Cl}(R(A))[/math].
Он, очевидно, непрерывен, а по теореме Хана-Банаха с сохранением напрерывности его можно продолжить на [math]F: \widetilde{\varphi} \in F^*[/math].
[math]\widetilde{\varphi}\mid _{F_1} = \varphi_0[/math]
[math]\forall y \in \operatorname{Cl}(R(A)): \widetilde{\varphi_0}(y) = 0[/math].
C другой стороны, [math] \widetilde{\varphi_0}(y) = 1[/math] — противоречие, т.к. [math]y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl}(R(A))[/math]. |
[math]\triangleleft[/math] |
Теорема 2
Теорема: |
[math] A \in \mathcal{L}(E,F),~R(A) = \operatorname{Cl} R(A) \implies R(A^*) = (\operatorname{Ker}A )^\perp [/math]. |
Доказательство: |
[math]\triangleright[/math] |
1) [math]f \in R(A^*) \implies f = \varphi A , \varphi \in F^*[/math]. Рассмотрим [math] x \in (\operatorname{Ker}A). [/math]
[math]f(x) = \varphi(Ax) = \varphi(0) = 0 \implies R(A^*) \subset (\operatorname{Ker}A )^\perp[/math].
2) Докажем теперь обратное включение:
Рассмотрим [math]f \in (\operatorname{Ker}A )^\perp[/math], если [math]Ax=0[/math], то [math]f(x)=0[/math]. Теперь надо показать, что [math]f \in R(A^*)[/math], т.е. проверить, что [math]f = \varphi A^*[/math].
TODO: Далее творится какой-то ад с использованием т. Х-Б, кто прошаренный в матане, напишите пожалуйста, особенно про факторизацию |
[math]\triangleleft[/math] |