Вопросы к консультации по функциональному анализу за 6 семестр — различия между версиями
Vasin (обсуждение | вклад) |
Sementry (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
* [[Компактный оператор|теорема Арцела-Асколи]] (впрочем, это используется только в одном примере, но мало ли) --[[Участник:Dgerasimov|Дмитрий Герасимов]] 02:38, 10 июня 2013 (GST) | * [[Компактный оператор|теорема Арцела-Асколи]] (впрочем, это используется только в одном примере, но мало ли) --[[Участник:Dgerasimov|Дмитрий Герасимов]] 02:38, 10 июня 2013 (GST) | ||
* зачем нужна замкнутость линейного подмножества, на котором определен функционал, чтобы его продолжить в теоремах 1, 2 [[Сопряженный оператор|тут]] --[[Участник:Dgerasimov|Дмитрий Герасимов]] 21:45, 10 июня 2013 (GST) | * зачем нужна замкнутость линейного подмножества, на котором определен функционал, чтобы его продолжить в теоремах 1, 2 [[Сопряженный оператор|тут]] --[[Участник:Dgerasimov|Дмитрий Герасимов]] 21:45, 10 июня 2013 (GST) | ||
+ | : <tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to R(A)</tex> — биекция, <tex>R(A)</tex> — замкнуто, <tex>F</tex> — банахово, поэтому <tex>R(A)</tex> — также банахово как подпространство в <tex>F</tex>. Введем норму для <tex>[x] \in E/_{\operatorname{Ker} A}</tex> как <tex>\|[x]\| = \inf\limits_{x\in [x]} \|x\|</tex>. — вот здесь мы используем замкнутость <tex> R(A) </tex> во второй теореме, если что. Для первой теоремы вопрос остается открытым (но там и в условии не требуется замкнутость <tex> R(A) </tex>). --[[Участник:Sementry|Мейнстер Д.]] 22:59, 10 июня 2013 (GST) | ||
* Не совсем понятно о чем идет речь в билетах об ортогональных дополнениях <tex>R(A)</tex> и <tex>R(A^*)</tex>. По хронологии изложения это видимо вышеупомянутые теоремы 1 и 2 из статьи [[Сопряженный оператор]], но они как-то не очень соответствуют названиям билетов --[[Участник:Vasin|Андрей Васин]] | * Не совсем понятно о чем идет речь в билетах об ортогональных дополнениях <tex>R(A)</tex> и <tex>R(A^*)</tex>. По хронологии изложения это видимо вышеупомянутые теоремы 1 и 2 из статьи [[Сопряженный оператор]], но они как-то не очень соответствуют названиям билетов --[[Участник:Vasin|Андрей Васин]] |
Версия 21:59, 10 июня 2013
- теорема об общем виде сопряженного оператора в --Дмитрий Герасимов 02:38, 10 июня 2013 (GST)
- теорема Арцела-Асколи (впрочем, это используется только в одном примере, но мало ли) --Дмитрий Герасимов 02:38, 10 июня 2013 (GST)
- зачем нужна замкнутость линейного подмножества, на котором определен функционал, чтобы его продолжить в теоремах 1, 2 тут --Дмитрий Герасимов 21:45, 10 июня 2013 (GST)
- Мейнстер Д. 22:59, 10 июня 2013 (GST) — биекция, — замкнуто, — банахово, поэтому — также банахово как подпространство в . Введем норму для как . — вот здесь мы используем замкнутость во второй теореме, если что. Для первой теоремы вопрос остается открытым (но там и в условии не требуется замкнутость ). --
- Не совсем понятно о чем идет речь в билетах об ортогональных дополнениях Сопряженный оператор, но они как-то не очень соответствуют названиям билетов --Андрей Васин и . По хронологии изложения это видимо вышеупомянутые теоремы 1 и 2 из статьи