Теоретический минимум по функциональному анализу за 6 семестр — различия между версиями
Vasin (обсуждение | вклад) (→12 Условие справедливости равенства R(I-A)=E.) |
Vasin (обсуждение | вклад) (→7 Базис Шаудера, лемма о координатном пространстве.) |
||
Строка 63: | Строка 63: | ||
Базисом Шаудера в банаховом пространстве <tex>X</tex> называется множество его элементов <tex>e_1, e_2 \dots e_n \dots</tex> такое, что у любого <tex>x</tex> в <tex>X</tex> существует единственное разложение <tex>x = \sum\limits_{n = 1}^{\infty} \alpha_i e_i</tex>. | Базисом Шаудера в банаховом пространстве <tex>X</tex> называется множество его элементов <tex>e_1, e_2 \dots e_n \dots</tex> такое, что у любого <tex>x</tex> в <tex>X</tex> существует единственное разложение <tex>x = \sum\limits_{n = 1}^{\infty} \alpha_i e_i</tex>. | ||
}} | }} | ||
− | {{ | + | |
+ | Определим <tex>F = \{(\alpha_1 \dots \alpha_n\dots) \mid \exists x \in X: \sum\limits_{n=1}^\infty \alpha_n e_n \to x \}</tex> — это линейное пространство. | ||
+ | |||
+ | Так как ряд сходится, <tex>F</tex> можно превратить в НП, определив норму как <tex>\| \alpha \| = \sup\limits_n \left\| \sum\limits_{i=1}^n \alpha_i e_i\right\|</tex>. | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Пространство <tex> F </tex> относительно этой нормы — банахово. | ||
+ | }} | ||
== 8 Почти конечномерность компактного оператора. == | == 8 Почти конечномерность компактного оператора. == |
Версия 22:20, 10 июня 2013
Содержание
- 1 1 [math]A^*[/math] и его ограниченность.
- 2 2 Ортогональные дополнения [math]E[/math] и [math]E^*[/math].
- 3 3 Ортогональное дополнение [math]R(A)[/math].
- 4 4 Ортогональное дополнение [math]R(A^*)[/math].
- 5 5 Арифметика компактных операторов.
- 6 6 О компактности [math]A^*[/math], сепарабельность [math]R(A)[/math].
- 7 7 Базис Шаудера, лемма о координатном пространстве.
- 8 8 Почти конечномерность компактного оператора.
- 9 9 Размерность [math]\operatorname{Ker}(I-A)[/math] компактного [math]A[/math].
- 10 10 Замкнутость [math]R(I-A)[/math] компактного [math]A[/math].
- 11 11 Лемма о [math]\operatorname{Ker}(I-A)^n[/math] компактного [math]A[/math].
- 12 12 Условие справедливости равенства [math]R(I-A)=E[/math].
- 13 13 Альтернатива Фредгольма-Шаудера.
- 14 14 Спектр компактного оператора.
- 15 15 Определение самосопряженного оператора, неравенство для [math](a+ib)I-A[/math].
- 16 16 Вещественность спектра ограниченного самосопряженного оператора.
- 17 17 Критерий включения в резольвентное множество ограниченного самосопряженного оператора.
- 18 18 Критерий включения в спектр ограниченного самосопряженного оператора.
- 19 19 Локализация спектра с.с. оператора посредством чисел [math]m-[/math] и [math]m+[/math].
- 20 20 Спектральный радиус ограниченного самосопряженного оператора и его норма.
- 21 21 Теорема Гильберта-Шмидта.
- 22 22 Разложение резольвенты компактного самосопряженного оператора.
- 23 23 Локальная сходимость метода простой итерации.
- 24 24 Локальная сходимость метода Ньютона для операторных уравнений.
- 25 25 Проекторы Шаудера.
- 26 26 Теорема Шаудера о неподвижной точке.
1 и его ограниченность.
Пусть оператор
действует из в , и функционал принадлежит .Рассмотрим
.Получили новый функционал
, принадлежащий . .. — сопряженный оператор к .
Теорема: |
Если — линейный ограниченный оператор, то . |
2 Ортогональные дополнения и .
Определение: |
Пусть Аналогично, если — ортогональное дополнение . , то . | — НП, .
3 Ортогональное дополнение .
Пусть оператор
действует из в
4 Ортогональное дополнение .
Пусть оператор
действует из в
5 Арифметика компактных операторов.
Определение: |
Множество называется относительно компактным (предкомпактным), если его замыкание компактно |
Определение: |
Линейный ограниченный оператор | называется компактным, если переводит любое ограниченное подмножество в относительно компактное множество из .
Утверждение: |
|
TODO: Что-то еще нужно добавить?
6 О компактности , сепарабельность .
Утверждение: |
Пусть — компактный, тогда — сепарабельно (то есть, в существует счетное всюду плотное подмножество). |
7 Базис Шаудера, лемма о координатном пространстве.
Определение: |
Базисом Шаудера в банаховом пространстве | называется множество его элементов такое, что у любого в существует единственное разложение .
Определим — это линейное пространство.
Так как ряд сходится,
можно превратить в НП, определив норму как .Утверждение: |
Пространство относительно этой нормы — банахово. |
8 Почти конечномерность компактного оператора.
Теорема (почти конечномерность компактного оператора): |
Если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух компактных операторов: такое, что:
|
9 Размерность компактного .
Утверждение: |
— компактный оператор. Тогда |
10 Замкнутость компактного .
Теорема: |
Пусть , компактен, тогда замкнуто. |
11 Лемма о компактного .
Утверждение: |
Пусть , — компактный оператор.
Тогда . |
12 Условие справедливости равенства .
Утверждение: |
Пусть — компактный оператор на банаховом , .
Тогда . |
13 Альтернатива Фредгольма-Шаудера.
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
14 Спектр компактного оператора.
Рассмотрим
.- , тогда оператор необратим, и — собственное число, то есть .
- , тогда по альтернативе, оператор непрерывно обратим, то есть .
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
15 Определение самосопряженного оператора, неравенство для .
Определение: |
Оператор | называется самосопряжённым ( ), если
,
16 Вещественность спектра ограниченного самосопряженного оператора.
Утверждение: |
Собственные числа самосопряжённого оператора вещественны |
17 Критерий включения в резольвентное множество ограниченного самосопряженного оператора.
Теорема: |
Пусть — самосопряжённый оператор. Тогда
|
18 Критерий включения в спектр ограниченного самосопряженного оператора.
Теорема: |
Пусть — самосопряжённый оператор. Тогда
|
19 Локализация спектра с.с. оператора посредством чисел и .
Определение: |
Теорема: |
1.
2. |
20 Спектральный радиус ограниченного самосопряженного оператора и его норма.
Утверждение: |
Если — самосопряжённый оператор, то |
21 Теорема Гильберта-Шмидта.
Теорема (Гильберт, Шмидт): |
Если — самосопряжённый оператор в гильбертовом пространстве , а — его (оператора) собственные подпространства, то |
22 Разложение резольвенты компактного самосопряженного оператора.
23 Локальная сходимость метода простой итерации.
Теорема (Локальная теорема о простой итерации): |
Пусть известно, что существует и .
Тогда существует такой шар , что если , то:
|
24 Локальная сходимость метода Ньютона для операторных уравнений.
Утверждение: |
25 Проекторы Шаудера.
— конечная -сеть.
Построим следующую функцию:
Определение: |
— проектор Шаудера. |
26 Теорема Шаудера о неподвижной точке.
Теорема (Шаудер, о неподвижной точке): |
Пусть — ограниченное замкнутое выпуклое подмножество B-пространства и вполне непрерывно отображает в себя.
Тогда . |