Базис Шаудера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м
Строка 11: Строка 11:
 
* но не у всех банаховых пространств он есть
 
* но не у всех банаховых пространств он есть
  
Пусть в <tex>X</tex> есть базис Шаудера, тогда между <tex>x = \sum\limits_{n=1}^\infty \alpha_k e_k</tex> и <tex>(\alpha_1 \dots \alpha_1 \dots)</tex> — бесконечными последовательностями есть биекция. Определим <tex>F = \{(\alpha_1 \dots \alpha_n\dots) \mid \exists x \in X: \sum\limits_{n=1}^\infty \alpha_n e_n \to x \}</tex> — это линейное пространство.  
+
Пусть в <tex>X</tex> есть базис Шаудера, тогда между <tex>x = \sum\limits_{n=1}^\infty \alpha_k e_k</tex> и <tex>(\alpha_1 \dots \alpha_n \dots)</tex> — бесконечными последовательностями есть биекция. Определим <tex>F = \{(\alpha_1 \dots \alpha_n\dots) \mid \exists x \in X: \sum\limits_{n=1}^\infty \alpha_n e_n \to x \}</tex> — это линейное пространство.  
  
 
Так как ряд сходится, <tex>F</tex> можно превратить в НП, определив норму как <tex>\| \alpha \| = \sup\limits_n \left\| \sum\limits_{i=1}^n \alpha_i e_i\right\|</tex>.
 
Так как ряд сходится, <tex>F</tex> можно превратить в НП, определив норму как <tex>\| \alpha \| = \sup\limits_n \left\| \sum\limits_{i=1}^n \alpha_i e_i\right\|</tex>.

Версия 08:37, 11 июня 2013

Выясним структуру компактного оператора в специальном случае — когда [math]X[/math] имеет базис Шаудера.


Определение:
Базисом Шаудера в банаховом пространстве [math]X[/math] называется множество его элементов [math]e_1, e_2 \dots e_n \dots[/math] такое, что у любого [math]x[/math] в [math]X[/math] существует единственное разложение [math]x = \sum\limits_{n = 1}^{\infty} \alpha_i e_i[/math].


Примеры:

  • ортонормированный базис в Гильбертовом пространстве — базис Шаудера
  • в [math]L_p(E)[/math] и [math]C[a, b][/math] тоже есть базис Шаудера
  • но не у всех банаховых пространств он есть

Пусть в [math]X[/math] есть базис Шаудера, тогда между [math]x = \sum\limits_{n=1}^\infty \alpha_k e_k[/math] и [math](\alpha_1 \dots \alpha_n \dots)[/math] — бесконечными последовательностями есть биекция. Определим [math]F = \{(\alpha_1 \dots \alpha_n\dots) \mid \exists x \in X: \sum\limits_{n=1}^\infty \alpha_n e_n \to x \}[/math] — это линейное пространство.

Так как ряд сходится, [math]F[/math] можно превратить в НП, определив норму как [math]\| \alpha \| = \sup\limits_n \left\| \sum\limits_{i=1}^n \alpha_i e_i\right\|[/math].

Утверждение:
Пространство [math] F [/math] относительно этой нормы — банахово.
[math]\triangleright[/math]

Пусть дана последовательность [math]y_k \in F[/math] (за [math]y_k^i[/math] обозначаем [math]i[/math]-ый элемент [math]k[/math]-ой последовательности), которая сходится в себе, то есть [math]\| y_m - y_k \| = \sup\limits_n \left\| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i \right \| \lt \varepsilon[/math] при [math]m, k \ge N(\varepsilon)[/math]

Рассмотрим последовательность [math]y_k^i[/math] при фиксированном [math]i[/math], докажем, что эта последовательность сходится: [math]| y_m^n - y_k^n | \| e_n \| = \| (y_m^n - y_k^n) e_n \| = \left \| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i - \sum\limits_{i = 1}^{n - 1} (y_m^i - y_k^i) e_i \right \| \le[/math] [math]\left \| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i \right \| + \left \| \sum\limits_{i = 1}^{n - 1} (y_m^i - y_k^i) e_i \right \| \le 2 \sup\limits_n \left \| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i \right \| \lt 2 \varepsilon[/math] при [math]m, k \gt N(\varepsilon)[/math]

Рассмотренная последовательность сходится в себе, следовательно, сходится. Пусть эта последовательность сходится к [math]z^n[/math], докажем, что [math]z[/math] является пределом последовательности [math]y_i[/math].

TODO: Coming soon...
[math]\triangleleft[/math]

Определим биективный линейный оператор [math]T: F \to X[/math] как [math]T \alpha = \sum\limits_{n=1}^\infty \alpha_n e_n[/math].

Покажем, что он ограничен: [math]\|T\alpha\| = \|x\| = \left\| \sum\limits_{n = 1}^\infty \alpha_n e_n \right\| \le \sup\limits_n \left\| \sum\limits_{i=1}^n \alpha_i e_i \right\| = \| \alpha \|[/math], то есть [math]\| T\alpha \| \le \| \alpha \| \implies \|T\| \le 1[/math].

Так как [math]F[/math] и [math]X[/math] — банаховы, по теореме Банаха об обратном операторе, обратный оператор также ограничен: [math]\|T^{-1}\| \le C[/math], то есть, [math]\|\alpha\| \le C \|x\|[/math].

Теорема (почти конечномерность компактного оператора):
Если [math]X[/math] — банахово пространство с базисом Шаудера, [math]A:X \to X[/math] — компактный, то для всех [math]\varepsilon \gt 0[/math] существует разложение оператора [math]A[/math] в сумму двух компактных операторов: [math]A = A_1 + A_2[/math] такое, что:
  1. [math]\operatorname{dim}(R(A_1)) \lt +\infty[/math]
  2. [math]\|A_2\| \lt \varepsilon[/math]
Доказательство:
[math]\triangleright[/math]

В полученном выше соотношении [math]\|\alpha\| \le C \|x\|[/math], раскроем нормы: [math]\sup\limits_n\left\| \sum\limits_{i=1}^n \alpha_n e_n \right\| \le C \left\| \sum\limits_{n=1}^\infty \alpha_n e_n \right\|[/math], а значит, [math] \forall n: \left\|\sum\limits_{i=1}^n \alpha_n e_n \right\| \le C \left\| \sum\limits_{n=1}^\infty \alpha_n e_n \right\|[/math]

Для каждого [math]n[/math], определим на элементах [math]X[/math] два оператора: [math]S_n(x) = \sum\limits_{i=1}^n \alpha_i e_i[/math] и [math]R_n(x) = \sum\limits_{i=n+1}^\infty \alpha_i e_i[/math].

По выше полученным неравенствам, [math]\|S_n(x)\| \le C \|x\|[/math], то есть нормы всех [math]S_n[/math] ограничены числом [math]C[/math].

Запишем оператор [math]I[/math] как [math]S_n + R_n[/math], тогда [math]R_n = I - S_n[/math], [math]\|R_n\| \le \| I\| + \|S_n\| \le 1 + C[/math].

Это значит, что нормы всех остаточных операторов [math] R_n [/math] ограничены числом [math]1 + C[/math].

Пусть [math]A : X \to X[/math] — компактный.

[math]A = IA = S_n A + R_n A = A_1 + A_2[/math].

[math]R(A_1) \subset \mathcal L(e_1, \ldots, e_n)[/math], то есть, для всех [math]n[/math], [math]A_1[/math] — конечномерный оператор.

Докажем теперь вторую часть теоремы: покажем, что для всех [math]\varepsilon \gt 0[/math] найдется [math]n_0[/math] такое, что [math]\|R_{n_0} A \| \lt \varepsilon[/math].

Рассмотрим [math]\overline V[/math] — единичный шар в [math]X[/math], [math]M = A(\overline V)[/math] — относительно компактно, следовательно, для любого [math]\varepsilon \gt 0[/math] есть конечная [math]\varepsilon[/math]-сеть [math]z_1, \ldots, z_p[/math].

[math]\forall y \in M \exists z_j:\ \|y - z_j\| \lt \varepsilon[/math]

[math]\|R_n y\| = \|R_n y - R_n z_j + R_n z_j\| \le \|R_n\| \|y - z_j\| + \|R_n z_j\| \le (1 + C) \varepsilon + \|R_n z_j\|[/math]

[math] \forall j = 1\ldots p, R_n z_j \xrightarrow[n \to \infty]{} 0 [/math], поэтому [math] \exists N_j: \forall n \gt N_j \|R_n z_j\| \lt \varepsilon [/math].

Возьмем [math] N = \max\limits_{j = 1\ldots p} N_j [/math], тогда [math] \forall n \gt N\ \forall j = 1\ldots p:\ \|R_n z_j \| \lt \varepsilon [/math].

Значит, [math]\|R_n y \| \le (2 + C) \varepsilon[/math].

[math]R_n(Ax) \stackrel{n \to \infty}{\rightrightarrows} 0[/math] на [math] \overline V [/math], так как [math]R_n(y) \stackrel{n \to \infty}{\rightrightarrows} 0[/math] на [math]M[/math].

Получили [math]\forall \varepsilon \gt 0 \exists n_0: \|R_{n_0} (Ax)\| \lt \varepsilon\ \forall x \in \overline{V}[/math], то есть, [math]\|R_{n_0}A\| \lt \varepsilon[/math].

В итоге, примем [math]A_1 = S_{n_0}A[/math], [math]A_2 = R_{n_0}A[/math]. [math]A_1[/math] и [math]A_2[/math] компактны как композиция компактного и огранниченного оператора.
[math]\triangleleft[/math]