Вопросы к консультации по функциональному анализу за 6 семестр — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 14: Строка 14:
 
* И вообще, попытайтесь пробежаться на консультации по всем неисправленным TODO из конспектов, их не так много --[[Участник:Sementry|Мейнстер Д.]] 01:17, 11 июня 2013 (GST)
 
* И вообще, попытайтесь пробежаться на консультации по всем неисправленным TODO из конспектов, их не так много --[[Участник:Sementry|Мейнстер Д.]] 01:17, 11 июня 2013 (GST)
 
* Вроде как ничего нет о компактности <tex>A^*</tex> (в викиконспектах по крайней мере) --[[Участник:Vasin|Andrey Vasin]] 03:37, 11 июня 2013 (GST)
 
* Вроде как ничего нет о компактности <tex>A^*</tex> (в викиконспектах по крайней мере) --[[Участник:Vasin|Andrey Vasin]] 03:37, 11 июня 2013 (GST)
 +
** Похоже, что нет, да --[[Участник:Dgerasimov|Дмитрий Герасимов]] 10:53, 11 июня 2013 (GST)
  
 
* Вопрос 5, "Арифметика компактных операторов". Входит ли сюда что-нибудь, кроме проверки на компактность произведения двух операторов, один из которых компактный, а другой — ограниченный? --[[Участник:Sementry|Мейнстер Д.]] 10:33, 11 июня 2013 (GST)
 
* Вопрос 5, "Арифметика компактных операторов". Входит ли сюда что-нибудь, кроме проверки на компактность произведения двух операторов, один из которых компактный, а другой — ограниченный? --[[Участник:Sementry|Мейнстер Д.]] 10:33, 11 июня 2013 (GST)
 
** есть еще конечная сумма компактных, и обратный оператор. В вопросах прошлого курса есть еще то, что предел последовательности компактных компактен, можно про это спросить. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 10:47, 11 июня 2013 (GST)
 
** есть еще конечная сумма компактных, и обратный оператор. В вопросах прошлого курса есть еще то, что предел последовательности компактных компактен, можно про это спросить. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 10:47, 11 июня 2013 (GST)

Версия 09:53, 11 июня 2013

  • зачем нужна замкнутость линейного подмножества, на котором определен функционал, чтобы его продолжить в теоремах 1, 2 тут --Дмитрий Герасимов 21:45, 10 июня 2013 (GST)
[math]\widetilde{A} : E/_{\operatorname{Ker} A} \to R(A)[/math] — биекция, [math]R(A)[/math] — замкнуто, [math]F[/math] — банахово, поэтому [math]R(A)[/math] — также банахово как подпространство в [math]F[/math]. Введем норму для [math][x] \in E/_{\operatorname{Ker} A}[/math] как [math]\|[x]\| = \inf\limits_{x\in [x]} \|x\|[/math]. — вот здесь мы используем замкнутость [math] R(A) [/math] во второй теореме, если что. Для первой теоремы вопрос остается открытым (но там и в условии не требуется замкнутость [math] R(A) [/math]). --Мейнстер Д. 22:59, 10 июня 2013 (GST)
  • Не совсем понятно о чем идет речь в билетах об ортогональных дополнениях [math]R(A)[/math] и [math]R(A^*)[/math]. По хронологии изложения это видимо вышеупомянутые теоремы 1 и 2 из статьи Сопряженный оператор, но они как-то не очень соответствуют названиям билетов --Андрей Васин
    • Видимо, имеются в виду соответствующие ядра (Ker) --Андрей Рыбак 23:32, 10 июня 2013 (GST)
  • Что такое "лемма о координатном пространстве" ? --Андрей Рыбак 23:32, 10 июня 2013 (GST)
    • Возможно, то, что [math]F = \left \{ (\alpha_1 ... \alpha_n ... ) \mid \sum\limits_{k=1}^{\infty} \alpha_k e_k \in X \right \} [/math] с нормой [math] \| \alpha \| = \sup\limits_{n\in\mathbb{N}} \| \sum\limits_{k=1}^n \alpha_k e_k [/math] будет B-пространством.
  • И вообще, попытайтесь пробежаться на консультации по всем неисправленным TODO из конспектов, их не так много --Мейнстер Д. 01:17, 11 июня 2013 (GST)
  • Вроде как ничего нет о компактности [math]A^*[/math] (в викиконспектах по крайней мере) --Andrey Vasin 03:37, 11 июня 2013 (GST)
  • Вопрос 5, "Арифметика компактных операторов". Входит ли сюда что-нибудь, кроме проверки на компактность произведения двух операторов, один из которых компактный, а другой — ограниченный? --Мейнстер Д. 10:33, 11 июня 2013 (GST)
    • есть еще конечная сумма компактных, и обратный оператор. В вопросах прошлого курса есть еще то, что предел последовательности компактных компактен, можно про это спросить. --Дмитрий Герасимов 10:47, 11 июня 2013 (GST)