Линейный оператор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Матрица линейного оператора)
Строка 8: Строка 8:
 
|definition=Линейный оператор <tex>\mathcal{A}:X \mapsto X</tex> называется автоморфизмом (или гомоморфизмом).
 
|definition=Линейный оператор <tex>\mathcal{A}:X \mapsto X</tex> называется автоморфизмом (или гомоморфизмом).
 
}}
 
}}
NB: <tex>\mathcal{A}(x) = \mathcal{A}x</tex>
+
{{Nota Bene|notabene=<tex>\mathcal{A}(x) = \mathcal{A}x</tex>}}
 
{{Определение
 
{{Определение
 
|definition=<tex>\mathcal{A},\mathcal{B}:X \mapsto Y</tex>, <tex>\mathcal{A}=\mathcal{B}</tex>, если <tex>\forall x \in X:\mathcal{A}x = \mathcal{B}x</tex>
 
|definition=<tex>\mathcal{A},\mathcal{B}:X \mapsto Y</tex>, <tex>\mathcal{A}=\mathcal{B}</tex>, если <tex>\forall x \in X:\mathcal{A}x = \mathcal{B}x</tex>

Версия 19:43, 12 июня 2013

Определение:
Пусть [math]X[/math] и [math]Y[/math] - линейные пространства над полем [math]F[/math]. Отображение [math]\mathcal{A}:X \mapsto Y[/math] называется линейным оператором, если [math]\forall x_1,x_2 \in X[/math], [math]\forall \lambda \in F[/math]:
  • [math]\mathcal{A}(x_1+x_2)=\mathcal{A}(x_1)+\mathcal{A}(x_2)[/math]
  • [math]\mathcal{A}(\lambda \cdot x_1) = \lambda \cdot \mathcal{A}(x_1)[/math]


Определение:
Линейный оператор [math]\mathcal{A}:X \mapsto X[/math] называется автоморфизмом (или гомоморфизмом).


N.B.:
[math]\mathcal{A}(x) = \mathcal{A}x[/math]


Определение:
[math]\mathcal{A},\mathcal{B}:X \mapsto Y[/math], [math]\mathcal{A}=\mathcal{B}[/math], если [math]\forall x \in X:\mathcal{A}x = \mathcal{B}x[/math]


Определение:
[math]O[/math] называется нулевым оператором, если [math]\forall x, y \in X:Ox=Oy[/math]

Примеры

Тождественный оператор

[math]I:X \mapsto X[/math] по формуле [math]Ix=x[/math]

Линейный оператор проектирования

[math]X=L_1 + L_2[/math]

[math]P_{L_1}^{||L_2}:X \mapsto L_1[/math]

[math]P_{L_2}^{||L1}:X \mapsto L_2[/math]

NB: [math]P_{L_{1,2}}^{||L_{2,1}}:X \mapsto X[/math] ([math]L_1[/math] и [math]L_2[/math] - п.п. [math]X[/math])

Оператор дифференцирования

Пусть [math]X=P_n; D:P_n \rightarrow P_{n-1}[/math] по формуле [math](Dp)(t)={dp(t) \over dt} = p^{'}(t)[/math]

Интегральный оператор

Пусть [math]X = C(a,b); K(s,t); s \in (a,b); t \in (a,b)[/math]

[math](Bf)(s) = \int_a^b K(s,t) \cdot f(t) \cdot dt[/math]

[math]B : C(a,b) \rightarrow C(a,b)[/math]

Матрица линейного оператора

Пусть [math]\mathcal{A}:X \mapsto Y[/math]

Пусть п.п. [math]X \leftrightarrow \{e_k\}_{k=1}^n, \dim X=n[/math]

Пусть п.п. [math]Y \leftrightarrow \{h_i\}_{i=1}^m, \dim Y = m[/math]

[math]\underset{1\leq k\leq n}{\mathcal{A}e_k}=\displaystyle \sum_{i=1}^m \alpha_k^i \cdot h_i \Rightarrow A=||\alpha_k^i||[/math], где [math]1\leq i\leq m, 1 \leq k \leq n[/math]

[math] A= \begin{pmatrix} \alpha_1^1 & \cdots & \alpha_n^1 \\ \alpha_1^2 & \cdots & \alpha_n^2 \\ \cdots & \cdots & \cdots \\ \alpha_1^m & \cdots & \alpha_n^m \\ \end{pmatrix} [/math]

Примеры

Нулевой оператор

[math] O_{[m \times n]}= \begin{pmatrix} 0 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & 0 \\ \end{pmatrix} [/math]

Оператор дифференцирования

[math]D:P_n \rightarrow P_{n-1}[/math]

[math]\{1,t,t^2,...,t^n\}[/math] - базис [math]P_n[/math]

[math] D= \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 &\cdots & 0 \\ \cdots & \cdots & \cdots & \cdots &\cdots & \cdots \\ 0 & 0 & 0 & 0 &\cdots & n \\ \end{pmatrix} [/math]