Изменения

Перейти к: навигация, поиск

Альтернатива Фредгольма — Шаудера

Нет изменений в размере, 01:41, 13 июня 2013
Так правильнее же, не?
Пусть <tex>T = I - A</tex>, <tex>A</tex> компактен, тогда <tex> R(T) </tex> замкнуто.
|proof=
[[Теорема Банаха об обратном операторе|Ранее]] мы доказали, что если уравнение <tex>Tx=y, y \in R(T)</tex> допускает априорную оценку (<tex>\exists \alpha~\exists forall x~Tx=y, \|x\| \leq a\|y\|</tex>), то <tex>R(T)</tex> замкнуто. Нужно доказать, что у <tex>T</tex> есть априорная оценка.
Пусть <tex>y \in R(T) \Rightarrow Tx=y</tex>. Тогда <tex>\forall z \in \operatorname{Ker}T \Rightarrow T(x+z) = T(x) + T(z) = y + 0 = y</tex>. Значит, все решения уравнения <tex>Tx=y</tex> записываются в форме <tex>x=x_0+z</tex>, где <tex>x_0</tex> — одно из решений, <tex>z</tex> принадлежит <tex>\operatorname{Ker} T</tex>. Но <tex>\dim\operatorname{Ker}T < + \infty \Rightarrow \operatorname{Ker}~T = \mathcal{L} \{ e_1, \ldots e_n \} \Rightarrow x = x_0 + \sum\limits_{k=1}^n \alpha_k e_k, \alpha_k \in \mathbb{R}</tex>.
315
правок

Навигация