Метрический тензор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «==Естественный изоморфизм евклидова пространства и его сопряжённого== Рассмотрим отобра...»)
(нет различий)

Версия 20:02, 13 июня 2013

Естественный изоморфизм евклидова пространства и его сопряжённого

Рассмотрим отображение [math]x \in E \longrightarrow f \in E^*[/math] по формуле [math]\left\langle x,y\right\rangle = (f;y); \forall y \in E[/math] Назовём это равенство [math](*)[/math]

Лемма (1):
Пусть [math]x \rightarrow f_1[/math] и [math]x \rightarrow f_2[/math]. Тогда [math]f_1=f_2[/math]
Доказательство:
[math]\triangleright[/math]

По равенству [math](*): \left\langle x_1,y\right\rangle=(f;y)[/math] и [math]\left\langle x_2,y\right\rangle=(f;y)[/math]

Вычтя одно из другого, по линейности [math]E^*[/math] получим: [math]0 = (f_1-f_2;y); \forall y \in E \Longrightarrow f_1-f_2= 0_E^* \Longrightarrow f_1=f_2[/math]

Таким образом, вектору [math]x[/math] соответствует единственная форма [math]f[/math]
[math]\triangleleft[/math]
Лемма (2):
Пусть [math]f \rightarrow x_1[/math] и [math]f \rightarrow x_2[/math]. Тогда [math]x_1=x_2[/math]
Доказательство:
[math]\triangleright[/math]

По равенству [math](*): \left\langle x,y\right\rangle=(f_1;y)[/math] и [math]\left\langle x,y\right\rangle=(f_2;y)[/math]

Вычтя одно из другого, по линейности [math]E^*[/math] получим: [math]\left\langle x_1-x_2,y\right\rangle = 0; \forall y \in E \Longrightarrow x_1-x_2= 0_E \Longrightarrow x_1=x_2[/math]

Таким образом, форме [math]f[/math] соответствует единственный вектор [math]x[/math]
[math]\triangleleft[/math]
Лемма (3, о линейности изоморфизма):
Если [math]x_1 \longleftrightarrow f_1[/math] и [math] x_2 \longleftrightarrow f_2[/math], то [math] \Longrightarrow x_1+x_2 \longleftrightarrow f_1+f_2[/math] и [math] \alpha x_1 \longleftrightarrow \alpha f_1[/math]
Доказательство:
[math]\triangleright[/math]

Линейность изоморфизма напрямую следует из линейности обоих пространств:

[math]\left\langle \alpha x_1,y\right\rangle = \alpha\left\langle x_1,y\right\rangle = \alpha(f_1,y)= ( \alpha f_1, y);[/math]
[math]\triangleleft[/math]
Теорема:
Формула [math](*): \left\langle x,y\right\rangle = (f;y); \forall y \in E[/math] определяет обратимый линейный оператор [math]\mathcal{G}: E \Longrightarrow E^*(G\cdot x=f); \; \exists \mathcal{G}^{-1}: E^* \Longrightarrow E(G^{-1}\cdot f=x)[/math]

Изоморфизм конечномерного Евклидова пространства является естественным изоморфизмом.

Пересадка формы из [math]E^*[/math] в [math]E[/math]

Рассмотрим [math]{\{e_i\}}_{i=1}^n[/math] - базис [math]E[/math]; [math]{\{f^k\}}_{k=1}^n[/math] - базис [math]E^*[/math]

[math](f^k;e_i) = \delta^k_i[/math](сопряжённые базисы)

Рассмотрим [math]G^{-1}f^k = e_i \in E[/math]

Лемма (1):
[math]{\{e^k\}}_{k=1}^n[/math] - базис [math]E[/math];
Доказательство:
[math]\triangleright[/math]

ЛНЗ набор [math]\{ f^1, ... , f^n\}[/math] под действием [math]G^{-1}[/math] переходит в [math]\{ e^1, ... , e^n\}[/math]

Значит, [math]{\{e^k\}}_{k=1}^n[/math] - базис [math]E[/math]
[math]\triangleleft[/math]
Лемма (2):
[math]\left\langle e^k;e^i\right\rangle=\left\langle e^i;e^k\right\rangle = \delta^k_i[/math];
Доказательство:
[math]\triangleright[/math]

[math]\left\langle e^k;y\right\rangle = (f^k;y); \forall y \in E[/math] Пусть [math]y=e_i[/math], тогда [math]\left\langle e^k;e_i\right\rangle=(f^k;e_i)=\delta^k_i[/math]

Рассмотрим [math]\left\langle e_i;e^k\right\rangle=\overline{\left\langle e^k;e_i\right\rangle}=\overline{\delta^k_i} = \delta^i_k[/math]
[math]\triangleleft[/math]