J2ni2Cmax — различия между версиями
(→Постановка задачи) |
(→Доказательство корректности алгоритма) |
||
Строка 54: | Строка 54: | ||
Расписание, построенное данным алгоритмом, является корректным и оптимальным. | Расписание, построенное данным алгоритмом, является корректным и оптимальным. | ||
|proof= | |proof= | ||
+ | [[Файл:f2cmax_fixed.png|400px|thumb|right|Рис. 2 - Расположение последовательных работ]] | ||
Корректность алгоритма очевидна. | Корректность алгоритма очевидна. | ||
Докажем оптимальность. | Докажем оптимальность. |
Версия 18:30, 22 июня 2013
Содержание
Постановка задачи
Рассмотрим задачу:
- Дано работ и станка.
- Для каждой работы известно её время выполнения на каждом станке .
- Для каждой работы известна последовательность станков - порядок, в котором нужно выполнить работу.
- Для любой работы (Длина последовательности ) .
Требуется минимизировать время окончания выполнения всех работ.
Описание алгоритма
- первый станок. - второй станок.
Разобьем все работы на четыре множества:
- - множество всех работ, которые должны выполнится только на .
- - множество всех работ, которые должны выполнится только на .
- - множество всех работ, которые должны выполнится сначала на затем на .
- - множество всех работ, которые должны выполнится сначала на затем на .
Решим задачу для и для . Получим расписание и .
Тогда оптимальное расписание для нашей задачи будет следующим:
- Расписание : сначала в соответсвии с расписанием . Затем в произвольном порядке. Затем в соответсвии с .
- Расписание : сначала в соответсвии с расписанием . Затем в произвольном порядке. Затем в соответсвии с .
Примечание: во время выполнения
на или на могут возникнуть простои из-за того, что работа ещё не выполнилась на предыдущем станке.Доказательство корректности алгоритма
- время выполнения множества работ на станке .
- множество всех работ, которые нужно сделать хотя бы раз на -м станке. (Формально )
Лемма: |
Расписание, построенное данным алгоритмом, обладает следующим свойством : один из станков работает без простоев. |
Доказательство: |
Рассмотрим 2 варианта: |
Сложность алгоритма
Время работы алгоритма равно времени работы алгоритма .
Сложность алгоритма
.