Сравнения, система вычетов, решение линейных систем по модулю — различия между версиями
Bochkarev (обсуждение | вклад) (→Теорема Вильсона) |
Bochkarev (обсуждение | вклад) (→Теорема Ферма) |
||
Строка 41: | Строка 41: | ||
Пусть <tex> P = (-1)^{n-1}P_{n-1}b_d </tex> <br> | Пусть <tex> P = (-1)^{n-1}P_{n-1}b_d </tex> <br> | ||
После этого решения исходного сравнения запишутся так : <tex> x \equiv P; P+m_d; P+2m_d; \ldots ;P+dm_d (mod \text{ }m)</tex> | После этого решения исходного сравнения запишутся так : <tex> x \equiv P; P+m_d; P+2m_d; \ldots ;P+dm_d (mod \text{ }m)</tex> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Версия 18:37, 8 октября 2010
Содержание
Сравнения по модулю
Будем рассматривать целые числа в связи с остатками от деления их на данное целое число m, которое назовем модулем.
Каждому целому числу отвечает определенный остаток от деления его на m. Если двум целым a и b отвечает один и тот же остаток r, то они называются сравнимыми по модулю m.
Сравнимость для a и b записывается так :
Сравнимость чисел a и b по модулю m равносильна:
- 1. Возможности представить a в форме , где t - целое.
- 2. Делимости на m.
Арифметика сравнений
Свойства сравнений
- 1. Два числа, сравнимые с третьим сравнимы между собой.
- 2. Сравнения можно почленно складывать.
- 3. Сравнения можно почленно перемножать.
- 4. Обе части сравнения можно разделить на их общий делитель, если последний взаимно прост с модулем.
- 5. Обе части сравнения можно умножить на одно и тоже число.
- 6. Обе части сравнения и модуль можно разделить на их общий делитель.
- 7. Если сравнение НОК этих модулей. имеет место по нескольким модулям, то оно имеет место и по модулю равному
- 8. Если сравнение имеет место по модулю m, то оно имеет место и по модулю d, равному любому делителю числа m.
- 9. Если одна часть сравнения и модуль делятся на некоторое число, то и другая сторона сравнения должна делится на это число.
- 10. Если , то .
Полная и приведенная система вычетов
Числа равноостаточные(сравнимые по модулю m) образуют класс чисел по модулю m.
Из такого определения следует, что всем числам класса отвечает один остаток r, и мы получим все числа класса,
если в форме
Любое число класса называется вычетом по модулю m. Вычет получаемый при , равный самому остатку r,
называется наименьшим неотрицательным вычетом.
Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.
Согласно 10-му свойству сравнений, числа одного класса по модулю m имеют одинаковый НОД. Особенно важны классы, содержащие числа, взаимно простые с модулем. Взяв вычет от каждого такого класса, получим приведенную систему вычетов по модулю m.
Решение линейных систем по модулю
Пусть
Поиск решений:
,
Составим новое сравнение ,
обозначим его ,
его решением будет , где - числитель подходящей дроби.
Пусть
После этого решения исходного сравнения запишутся так :