NP-полнота задачи о выполнимости булевой формулы в форме 3-КНФ — различия между версиями
(→Доказательство принадлежности 3SAT классу NPH) |
|||
Строка 18: | Строка 18: | ||
===Доказательство принадлежности 3SAT классу NPH=== | ===Доказательство принадлежности 3SAT классу NPH=== | ||
− | Покажем, что <tex>CNFSAT \le 3SAT</tex>, то есть <tex>CNFSAT</tex> сводится по Куку к <tex>3SAT</tex>. | + | Покажем, что <tex>CNFSAT \le 3SAT</tex>, то есть <tex>CNFSAT</tex> [[Сведение_по_Куку|сводится по Куку]] к <tex>3SAT</tex>. |
Рассмотрим один дизъюнкт булевой формулы в форме 3-КНФ. Он должен иметь вид <tex>(x \vee y \vee z)</tex>. | Рассмотрим один дизъюнкт булевой формулы в форме 3-КНФ. Он должен иметь вид <tex>(x \vee y \vee z)</tex>. |
Версия 18:20, 17 марта 2010
Содержание
Задача
в 3-КНФ,
Теорема
Доказательство
Для того, чтобы доказать
-полноту задачи, необходимо установить следующие факты:- .
- ;
Доказательство принадлежности 3SAT классу NP
Возьмем в качестве сертификата набор
, где . Верификатор подставляет в формулу и проверяет её на равенство единице. Время работы верификатора и длина сертификата, очевидно, полиномиальны. Итак, .Доказательство принадлежности 3SAT классу NPH
Покажем, что сводится по Куку к .
, то естьРассмотрим один дизъюнкт булевой формулы в форме 3-КНФ. Он должен иметь вид
. Научимся приводить члены вида , , к нужному виду.- заменим на . Ясно, что последняя формула выполнима тогда и только тогда, когда выполнима исходная, при любых ;
- заменим на - свели задачу к предыдущей;
- Если встречается скобка вида , введем новых переменных и заменим нашу скобку на скобки:
Таким образом, мы свели
к , следовательно . Теорема доказана.