Алгоритм нахождения Гамильтонова цикла в условиях теорем Дирака и Оре — различия между версиями
Ak57 (обсуждение | вклад) (→Псевдокод) |
Ak57 (обсуждение | вклад) (→Описание алгоритма) |
||
Строка 1: | Строка 1: | ||
__TOC__ | __TOC__ | ||
== Описание алгоритма == | == Описание алгоритма == | ||
− | Алгоритм находит [[Гамильтоновы графы|гамильтонов цикл]] в [[Основные определения теории графов#Неориентированные графы|неориентированном графе]] <tex> \mathbb{G} = (\mathbb{V}, \mathbb{E}) </tex>, если выполняются условия [[Теорема Оре|теоремы Оре]] или выполнена [[теорема Дирака]]. Рассмотрим перестановку вершин <tex> \mathrm{v}_1 \mathrm{v}_2 ... \mathrm{v}_n</tex>. Если между каждой парой соседних вершин в перестановке существует ребро, то мы получили [[Гамильтоновы графы|Гамильтонов цикл]]. В противном случае начнем последовательно рассматривать пары соседних вершин <tex> \mathrm{v}_i \mathrm{v}_{i+1} </tex>, начиная с пары <tex> \mathrm{v}_1 \mathrm{v}_2 </tex>. | + | Алгоритм находит [[Гамильтоновы графы|гамильтонов цикл]] в [[Основные определения теории графов#Неориентированные графы|неориентированном графе]] <tex> \mathbb{G} = (\mathbb{V}, \mathbb{E}) </tex>, если выполняются условия [[Теорема Оре|теоремы Оре]] или выполнена [[теорема Дирака]]. Рассмотрим перестановку вершин <tex> \mathrm{v}_1 \mathrm{v}_2 ... \mathrm{v}_n</tex>, где <tex>n = | \mathbb{V} |</tex>. Если между каждой парой соседних вершин в перестановке существует ребро, то мы получили [[Гамильтоновы графы|Гамильтонов цикл]]. В противном случае начнем последовательно рассматривать пары соседних вершин <tex> \mathrm{v}_i \mathrm{v}_{i+1} </tex>, начиная с пары <tex> \mathrm{v}_1 \mathrm{v}_2 </tex>. |
Если между ними есть ребро, то переходим к следующей паре вершин <tex> \mathrm{v}_{i+1} \mathrm{v}_{i+2}</tex>. | Если между ними есть ребро, то переходим к следующей паре вершин <tex> \mathrm{v}_{i+1} \mathrm{v}_{i+2}</tex>. | ||
Строка 7: | Строка 7: | ||
Если же ребра нет, то найдем такую вершину <tex>\mathrm{v}_j</tex>, что <tex> \mathrm{v}_j \in{\mathbb{V}} \setminus \{ \mathrm{v}_i, \mathrm{v}_{i+1} \} </tex>, | Если же ребра нет, то найдем такую вершину <tex>\mathrm{v}_j</tex>, что <tex> \mathrm{v}_j \in{\mathbb{V}} \setminus \{ \mathrm{v}_i, \mathrm{v}_{i+1} \} </tex>, | ||
и существуют ребра <tex> \mathrm{v}_i \mathrm{v}_j</tex> и <tex> \mathrm{v}_{i+1} \mathrm{v}_{j+1} </tex>. | и существуют ребра <tex> \mathrm{v}_i \mathrm{v}_j</tex> и <tex> \mathrm{v}_{i+1} \mathrm{v}_{j+1} </tex>. | ||
− | После чего перевернем часть перестановки от <tex>i+1 </tex> до <tex> j </tex> (считаем, что наша перестановка зациклиный список). | + | После чего перевернем часть перестановки от <tex>i+1 </tex> до <tex> j </tex> включительно(считаем, что наша перестановка зациклиный список). |
− | Например, если <tex>n = 10, i = 8, j = 1 | + | Например, если <tex>n = 10, i = 8, j = 1</tex>, то <tex>\mathrm{v}_9 </tex> и <tex>\mathrm{v}_1</tex> поменяются местами, а <tex>\mathrm{v}_{10}</tex> останется на месте. |
− | |||
== Псевдокод == | == Псевдокод == |
Версия 16:57, 10 октября 2013
Описание алгоритма
Алгоритм находит гамильтонов цикл в неориентированном графе , если выполняются условия теоремы Оре или выполнена теорема Дирака. Рассмотрим перестановку вершин , где . Если между каждой парой соседних вершин в перестановке существует ребро, то мы получили Гамильтонов цикл. В противном случае начнем последовательно рассматривать пары соседних вершин , начиная с пары .
Если между ними есть ребро, то переходим к следующей паре вершин
.Если же ребра нет, то найдем такую вершину
, что , и существуют ребра и . После чего перевернем часть перестановки от до включительно(считаем, что наша перестановка зациклиный список). Например, если , то и поменяются местами, а останется на месте.Псевдокод
for(int i = 1; i < n; i++) //перебираем все пары соседних вершин в перестановке if () //если есть ребро continue; //переходим к следующей паре else //иначе while( ) //перебираем все вершины if ( ) //если есть ребра swap( ); //разворачиваем часть перестановки от до continue; //переходим к следующей паре вершин |
Доказательство алгоритма
Заметим, что поскольку мы сделали нашу перестановку в виде зацикленного списка, то мы можем рассматривать перебор все пар соседних в перестановке вершин, как сдвиг указателя на начало списка. Тогда будем сдвигать указатель на нашу перестановку так, чтобы она начиналась с рассматриваемой пары
. Если теперь между первыми двумя вершинами есть ребро, то можем переходить к рассмотрению следующей пары, так как в этом случае мы ничего не делаем. Если же ребра нет, то докажем, что обязательно найдется вершина , такая что .Пусть теоремы Оре или теоремы Дирака, в зависимости от наших начальных условий. А значит , следовательно искомая вершина обязательно найдется. Поскольку каждый раз, когда у нас нет ребра между двумя обрабатываемыми вершинами, мы переворачиваем нашу последовательность так, чтобы после переворота и становились связанными ребром, то, рассмотрев все пары вершин в последовательности, мы добьемся того, что любые две соседние пары вершин будут связаны ребром, а это и значит что мы нашли цикл.
{ } и { } . Тогда , откуда . Но по условию