Алгоритм нахождения Гамильтонова цикла в условиях теорем Дирака и Оре — различия между версиями
Ak57 (обсуждение | вклад) м (→Описание алгоритма) |
Ak57 (обсуждение | вклад) м (→Псевдокод) |
||
Строка 19: | Строка 19: | ||
if <tex> v_i v_{i+1} \notin \mathbb{E} </tex> //если нет ребра между <tex>v_i v_{i+1} </tex> | if <tex> v_i v_{i+1} \notin \mathbb{E} </tex> //если нет ребра между <tex>v_i v_{i+1} </tex> | ||
for <tex>v_j \in \mathbb{V} \setminus \{v_i, v_{i + 1}\}</tex> //перебираем все остальные вершины | for <tex>v_j \in \mathbb{V} \setminus \{v_i, v_{i + 1}\}</tex> //перебираем все остальные вершины | ||
− | if <tex>v_i v_j \in \mathbb{E}\ | + | if <tex>v_i v_j \in \mathbb{E}\</tex> && <tex> v_{i+1} v_{j+1} \in \mathbb{E}</tex> //если есть ребра <tex>v_i v_j,\ v_{i+1} v_{j+1} </tex> |
− | reverse_subsequence(<tex>P, i+1, j</tex>) //разворачиваем часть перестановки <tex>P</tex> от i+1 позиции до j | + | reverse_subsequence(<tex>P, i+1, j</tex>) //разворачиваем часть перестановки <tex>P</tex> от i+1 позиции до j |
− | + | break //переходим к следующей итерации внешнего for | |
|width = "310px" | | |width = "310px" | |
Версия 20:20, 20 октября 2013
Описание алгоритма
Алгоритм находит гамильтонов цикл в неориентированном графе , если выполняются условия теоремы Оре или выполнена теорема Дирака. Рассмотрим перестановку вершин , где . Если между каждой парой соседних вершин в перестановке существует ребро, то мы получили Гамильтонов цикл. В противном случае начнем последовательно рассматривать пары соседних вершин , начиная с пары .
Если между ними есть ребро, то переходим к следующей паре вершин
.Если же ребра нет, то найдем такую вершину
, что , и существуют ребра и . Если то перевернем часть перестановки от до (включительно). В случае если обменяем в перестановке элементы на позициях и , где . Например, если , то и поменяются местами, а останется на месте.Псевдокод
for//перебираем все вершины перестановки if //если нет ребра между for //перебираем все остальные вершины if && //если есть ребра reverse_subsequence( ) //разворачиваем часть перестановки от i+1 позиции до j break //переходим к следующей итерации внешнего for |
Доказательство алгоритма
Заметим, что поскольку мы сделали нашу перестановку в виде зацикленного списка, то мы можем рассматривать перебор все пар соседних в перестановке вершин, как сдвиг указателя на начало списка. Тогда будем сдвигать указатель на нашу перестановку так, чтобы она начиналась с рассматриваемой пары
. Если теперь между первыми двумя вершинами есть ребро, то можем переходить к рассмотрению следующей пары, так как в этом случае мы ничего не делаем. Если же ребра нет, то докажем, что обязательно найдется вершина , такая что .Пусть теоремы Оре или теоремы Дирака, в зависимости от наших начальных условий. А значит , следовательно искомая вершина обязательно найдется. Поскольку каждый раз, когда у нас нет ребра между двумя обрабатываемыми вершинами, мы переворачиваем нашу последовательность так, чтобы после переворота и становились связанными ребром, то, рассмотрев все пары вершин в последовательности, мы добьемся того, что любые две соседние пары вершин будут связаны ребром, а это и значит что мы нашли цикл.
{ } и { } . Тогда , откуда . Но по условию