Основные определения: алфавит, слово, язык, конкатенация, свободный моноид слов; операции над языками — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Свойства)
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
'''Алфавит''' {{---}} конечное непустое множество. Условимся обозначать алфавит символом <tex>\Sigma</tex>.
+
'''Алфавит''' (англ. ''alphabet'') {{---}} конечное непустое [[Множества|множество]] элментов, называемых '''символами''' (англ. ''symbols''). Условимся обозначать алфавит большой греческой буквой <tex>\Sigma</tex>.
 
}}  
 
}}  
  
Строка 10: Строка 10:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
'''Слово''' ('''цепочка''') {{---}} конечная последовательность символов некоторого алфавита.
+
'''Слово''' (англ. ''string'' {{---}} ''слово'', ''цепочка'') {{---}} конечная последовательность символов некоторого алфавита.
 
}}
 
}}
  
Строка 36: Строка 36:
 
|id = deflanguage
 
|id = deflanguage
 
|definition =
 
|definition =
'''Язык''' над алфавитом <tex>\Sigma</tex> {{---}} некоторое подмножество <tex>\Sigma^*</tex>. Иногда такие языки называют '''формальными''', чтобы подчеркнуть отличие от языков в привычном смысле.
+
'''Язык''' (англ. ''language'') над алфавитом <tex>\Sigma</tex> {{---}} некоторое подмножество <tex>\Sigma^*</tex>. Иногда такие языки называют '''формальными''' (англ. ''formal''), чтобы подчеркнуть отличие от языков в привычном смысле.
 
}}
 
}}
  
Строка 43: Строка 43:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Пусть <tex>x, y \in \Sigma^*</tex>. Тогда <tex>xy</tex> обозначает их '''конкатенацию''', т.е. цепочку, в которой последовательно записаны цепочки x и y.
+
Пусть <tex>x, y \in \Sigma^*</tex>. Тогда <tex>xy</tex> обозначает их '''конкатенацию''' (англ. ''concatenation''), т.е. цепочку, в которой последовательно записаны цепочки x и y.
 
}}
 
}}
  

Версия 02:23, 1 ноября 2013

Определение:
Алфавит (англ. alphabet) — конечное непустое множество элментов, называемых символами (англ. symbols). Условимся обозначать алфавит большой греческой буквой [math]\Sigma[/math].


Наиболее часто используются следующие алфавиты:

  1. [math]\Sigma=\{0, 1\}[/math] — бинарный или двоичный алфавит.
  2. [math]\Sigma=\{a, b, ...,z\}[/math] — множество строчных букв английского алфавита.


Определение:
Слово (англ. stringслово, цепочка) — конечная последовательность символов некоторого алфавита.


Определение:
Пустая цепочка — цепочка, не содержащая ни одного символа. Эту цепочку, обозначаемую [math] \varepsilon [/math], можно рассматривать как цепочку в любом алфавите.


Определение:
Длина цепочки — число символов в цепочке. Длину некоторой цепочки [math]w[/math] обычно обозначают [math]|w|[/math].


Определение:
[math]\Sigma^k[/math] — множество цепочек длины [math]k[/math] над алфавитом [math]\Sigma[/math].


Определение:
[math]\Sigma^* = \bigcup \limits _{k=0}^\infty \Sigma^k[/math] — множество всех цепочек над алфавитом [math]\Sigma[/math].


Определение:
Язык (англ. language) над алфавитом [math]\Sigma[/math] — некоторое подмножество [math]\Sigma^*[/math]. Иногда такие языки называют формальными (англ. formal), чтобы подчеркнуть отличие от языков в привычном смысле.


Отметим, что язык в [math]\Sigma[/math] не обязательно должен содержать цепочки, в которые входят все символы [math]\Sigma[/math]. Поэтому, если известно, что [math]L[/math] является языком над [math]\Sigma[/math], то можно утверждать, что [math]L[/math] — это язык над любым алфавитом, являющимся надмножеством [math]\Sigma[/math].


Определение:
Пусть [math]x, y \in \Sigma^*[/math]. Тогда [math]xy[/math] обозначает их конкатенацию (англ. concatenation), т.е. цепочку, в которой последовательно записаны цепочки x и y.


Свойства

  • [math]\forall \alpha, \beta, \gamma. (\alpha\beta)\gamma=\alpha(\beta\gamma)[/math]
  • [math]\forall \alpha, \beta. \alpha\varepsilon=\varepsilon\alpha=\alpha[/math]

Таким образом, мы получаем свободный моноид слов.

Операции над языками

Пусть [math]L[/math] и [math]M[/math] — языки. Тогда над ними можно определить следующие операции.

  1. Теоретико-множественные операции:
    • [math]L \cup M[/math] — объединение,
    • [math]L \cap M [/math] — пересечение,
    • [math]L \setminus M[/math] — разность,
    • [math]\overline{L}=\Sigma^* \setminus L[/math] — дополнение.
  2. Конкатенация: [math]LM=\left\{\alpha\beta|\alpha \in L, \beta \in M\right\}[/math].
  3. Конкатенация с обратным языком: [math]LR^{-1} = \{ w \mid \exists y \in R : wy \in L\}[/math]; конкатенация с обратным словом: [math]Ly^{-1} = L\{y\}^{-1}, y \in \Sigma^*[/math].
  4. Степень языка: [math]L^k=\begin{cases} \{\varepsilon\}, k = 0\\ LL^{k-1}, k \gt 0. \end{cases} [/math]
  5. Замыкание Клини: [math]L^*=\bigcup\limits_{i=0}^{\infty}L^i[/math].

Примеры

  • [math](\{0\}^*) \cup (\{1\}^*)[/math] — язык состоит из последовательностей нулей, последовательностей единиц и пустой строки.
  • [math](\{0\}\{0\}^*) \cup (\{1\}\{1\}^*)[/math] — аналогично предыдущему, но не содержит пустую строку.
  • [math](\{0\} \cup \{1\})^* = \{0, 1\}^*[/math] — содержит все двоичные векторы и пустую строку.
  • Если [math]L_p[/math] — язык десятичных представлений всех простых чисел, то язык [math](L_p \setminus (\{3\}\{1,2,3,4,5,6,7,8,9,0\}^*))[/math] будет содержать десятичные представления простых чисел, не начинающихся с тройки.
  • [math]\{\mathrm{ab, ba, bba, abab, aa}\}a^{-1} = \{\mathrm{b, bb, a}\}[/math].