Участник:Dgerasimov/Algebra — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 14: Строка 14:
 
! [[Monoid]]
 
! [[Monoid]]
 
| Y || Y || Y || N || N
 
| Y || Y || Y || N || N
 +
|-
 +
! [[Monoid|Commutative monoid]]
 +
| Y || Y || Y || N || Y
 
|-
 
|-
 
! [[Group (mathematics)|Group]]
 
! [[Group (mathematics)|Group]]
Строка 61: Строка 64:
 
|-
 
|-
 
! [[Abelian Group]]
 
! [[Abelian Group]]
| Y || N || N || N || N || N || N || N || N || N
+
| ? || [http://en.wikipedia.org/wiki/Ring_%28mathematics%29 Ring] || [http://en.wikipedia.org/wiki/Ring_%28mathematics%29 Unital ring] || ? || [http://en.wikipedia.org/wiki/Commutative_ring Commutative ring] || ? || ? || ? || ? || ?
 
|-
 
|-
 
! [[Loop (algebra)|Loop]]
 
! [[Loop (algebra)|Loop]]

Версия 09:35, 6 ноября 2013

Taken from [1]

Group-like structures
Totality* Associativity Identity Inverses Commutativity
Magma Y N N N N
Semigroup Y Y N N N
Monoid Y Y Y N N
Commutative monoid Y Y Y N Y
Group Y Y Y Y N
Abelian Group Y Y Y Y Y
Loop Y N Y Y** N
Quasigroup Y N N N N
Groupoid N Y Y Y N
Category N Y Y N N
Semicategory N Y N N N
*Closure, which is used in many sources to define group-like structures, is an equivalent axiom to totality, though defined differently.
**Each element of a loop has a left and right inverse, but these need not coincide.


Ring-like structures
Magma* Semigroup Monoid Group Abelian Group Loop Quasigroup Groupoid Cathegory Semicathegory
Magma Y N N N N N N N N N
Semigroup Y N N N N N N N N N
Monoid Y N N N N N N N N N
Group Y N N N N N N N N N
Abelian Group  ? Ring Unital ring  ? Commutative ring  ?  ?  ?  ?  ?
Loop Y N N N N N N N N N
Quasigroup Y N N N N N N N N N
Groupoid Y N N N N N N N N N
Category Y N N N N N N N N N
Semicategory Y N N N N N N N N N