Участник:Dgerasimov/Algebra — различия между версиями
Строка 1: | Строка 1: | ||
+ | == Group-like structures == | ||
+ | |||
Taken from [http://en.wikipedia.org/wiki/Template:Group-like_structures] | Taken from [http://en.wikipedia.org/wiki/Template:Group-like_structures] | ||
{| style="text-align:center" | {| style="text-align:center" | ||
Строка 44: | Строка 46: | ||
|} | |} | ||
+ | == Ring-like structures == | ||
{| style="text-align:center" | {| style="text-align:center" |
Версия 13:36, 6 ноября 2013
Group-like structures
Taken from [1]
Group-like structures | |||||
Totality* | Associativity | Identity | Inverses | Commutativity | |
---|---|---|---|---|---|
Magma | Y | N | N | N | N |
Semigroup | Y | Y | N | N | N |
Monoid | Y | Y | Y | N | N |
Commutative monoid | Y | Y | Y | N | Y |
Group | Y | Y | Y | Y | N |
Abelian Group | Y | Y | Y | Y | Y |
Loop | Y | N | Y | Y** | N |
Quasigroup | Y | N | N | N | N |
Groupoid | N | Y | Y | Y | N |
Category | N | Y | Y | N | N |
Semicategory | N | Y | N | N | N |
*Closure, which is used in many sources to define group-like structures, is an equivalent axiom to totality, though defined differently. | |||||
**Each element of a loop has a left and right inverse, but these need not coincide. |
Ring-like structures
Ring-like structures | |||||||||||
Magma* | Semigroup | Monoid | Commutative monoid | Group | Abelian Group | Loop | Quasigroup | Groupoid | Cathegory | Semicathegory | |
---|---|---|---|---|---|---|---|---|---|---|---|
Magma | Y | N | N | ? | N | N | N | N | N | N | N |
Semigroup | Y | N | N | ? | N | N | N | N | N | N | N |
Monoid | Y | N | N | ? | N | N | N | N | N | N | N |
Commutative monoid | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
Group | Y | N | N | ? | N | N | N | N | N | N | N |
Abelian Group | ? | Ring | Unital ring | Commutative ring | Division ring (algebra) | Field | ? | ? | ? | ? | ? |
Loop | Y | N | N | ? | N | N | N | N | N | N | N |
Quasigroup | Y | N | N | ? | N | N | N | N | N | N | N |
Groupoid | Y | N | N | ? | N | N | N | N | N | N | N |
Category | Y | N | N | ? | N | N | N | N | N | N | N |
Semicategory | Y | N | N | ? | N | N | N | N | N | N | N |