Основные определения: алфавит, слово, язык, конкатенация, свободный моноид слов; операции над языками — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(добавлена ссылка на книгу)
Строка 46: Строка 46:
 
}}
 
}}
  
==Свойства==
+
Множество строк с операцией ''конкатенация'' образует [[Моноид|свободный моноид]].
 
 
* <tex>\forall \alpha, \beta, \gamma. (\alpha\beta)\gamma=\alpha(\beta\gamma)</tex>
 
* <tex>\forall \alpha, \beta. \alpha\varepsilon=\varepsilon\alpha=\alpha</tex>
 
 
 
Таким образом, мы получаем '''свободный [[Моноид|моноид]] слов'''.
 
  
 
== Операции над языками ==
 
== Операции над языками ==
Строка 77: Строка 72:
  
  
[[Категория: Теория формальных языков]]
+
== Ссылки ==
[[Категория: Автоматы и регулярные языки]]
+
* [http://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCsQFjAA&url=http%3A%2F%2Fehess.modelisationsavoirs.fr%2Fatiam%2Fbiblio%2FLothaire83-chap1.pdf&ei=UiV6UuvbAeaP4gSot4HwCA&usg=AFQjCNGUnEUG4oKbynqjDvd6NVMfSUuMJQ&sig2=GzMd4HvBNW2vYctSWDfvZQ&bvm=bv.55980276,d.bGE&cad=rjt M.Lothaire "Combinatorics on words"]
  
 
[[Категория: Теория формальных языков]]
 
[[Категория: Теория формальных языков]]
 
[[Категория: Автоматы и регулярные языки]]
 
[[Категория: Автоматы и регулярные языки]]

Версия 14:21, 6 ноября 2013

Определение:
Алфавит (англ. alphabet) — конечное непустое множество элментов, называемых символами (англ. symbols). Условимся обозначать алфавит большой греческой буквой [math]\Sigma[/math].


Наиболее часто используются следующие алфавиты:

  1. [math]\Sigma=\{0, 1\}[/math] — бинарный или двоичный алфавит.
  2. [math]\Sigma=\{a, b, ...,z\}[/math] — множество строчных букв английского алфавита.


Определение:
Слово (англ. stringслово, цепочка) — конечная последовательность символов некоторого алфавита.


Определение:
Пустая цепочка — цепочка, не содержащая ни одного символа. Эту цепочку, обозначаемую [math] \varepsilon [/math], можно рассматривать как цепочку в любом алфавите.


Определение:
Длина цепочки — число символов в цепочке. Длину некоторой цепочки [math]w[/math] обычно обозначают [math]|w|[/math].


Определение:
[math]\Sigma^k[/math] — множество цепочек длины [math]k[/math] над алфавитом [math]\Sigma[/math].


Определение:
[math]\Sigma^* = \bigcup \limits _{k=0}^\infty \Sigma^k[/math] — множество всех цепочек над алфавитом [math]\Sigma[/math].


Определение:
Язык (англ. language) над алфавитом [math]\Sigma[/math] — некоторое подмножество [math]\Sigma^*[/math]. Иногда такие языки называют формальными (англ. formal), чтобы подчеркнуть отличие от языков в привычном смысле.


Отметим, что язык в [math]\Sigma[/math] не обязательно должен содержать цепочки, в которые входят все символы [math]\Sigma[/math]. Поэтому, если известно, что [math]L[/math] является языком над [math]\Sigma[/math], то можно утверждать, что [math]L[/math] — это язык над любым алфавитом, являющимся надмножеством [math]\Sigma[/math].


Определение:
Пусть [math]x, y \in \Sigma^*[/math]. Тогда [math]xy[/math] обозначает их конкатенацию (англ. concatenation), т.е. цепочку, в которой последовательно записаны цепочки x и y.


Множество строк с операцией конкатенация образует свободный моноид.

Операции над языками

Пусть [math]L[/math] и [math]M[/math] — языки. Тогда над ними можно определить следующие операции.

  1. Теоретико-множественные операции:
    • [math]L \cup M[/math] — объединение,
    • [math]L \cap M [/math] — пересечение,
    • [math]L \setminus M[/math] — разность,
    • [math]\overline{L}=\Sigma^* \setminus L[/math] — дополнение.
  2. Конкатенация: [math]LM=\left\{\alpha\beta|\alpha \in L, \beta \in M\right\}[/math].
  3. Конкатенация с обратным языком: [math]LR^{-1} = \{ w \mid \exists y \in R : wy \in L\}[/math]; конкатенация с обратным словом: [math]Ly^{-1} = L\{y\}^{-1}, y \in \Sigma^*[/math].
  4. Степень языка: [math]L^k=\begin{cases} \{\varepsilon\}, k = 0\\ LL^{k-1}, k \gt 0. \end{cases} [/math]
  5. Замыкание Клини: [math]L^*=\bigcup\limits_{i=0}^{\infty}L^i[/math].

Примеры

  • [math](\{0\}^*) \cup (\{1\}^*)[/math] — язык состоит из последовательностей нулей, последовательностей единиц и пустой строки.
  • [math](\{0\}\{0\}^*) \cup (\{1\}\{1\}^*)[/math] — аналогично предыдущему, но не содержит пустую строку.
  • [math](\{0\} \cup \{1\})^* = \{0, 1\}^*[/math] — содержит все двоичные векторы и пустую строку.
  • Если [math]L_p[/math] — язык десятичных представлений всех простых чисел, то язык [math](L_p \setminus (\{3\}\{1,2,3,4,5,6,7,8,9,0\}^*))[/math] будет содержать десятичные представления простых чисел, не начинающихся с тройки.
  • [math]\{\mathrm{ab, ba, bba, abab, aa}\}a^{-1} = \{\mathrm{b, bb, a}\}[/math].


Ссылки