Моноид — различия между версиями
Shersh (обсуждение | вклад) |
Shersh (обсуждение | вклад) м |
||
Строка 45: | Строка 45: | ||
* [http://www.proofwiki.org/wiki/Definition:Free_Monoid Proof Wiki {{---}} Free monoid] | * [http://www.proofwiki.org/wiki/Definition:Free_Monoid Proof Wiki {{---}} Free monoid] | ||
− | [[Категория: | + | [[Категория:Теория групп]] |
Версия 17:22, 9 ноября 2013
Определение: |
Тройка моноидом, если она удовлетворяет следующим аксиомам:
| называется
Другими словами, моноид — это полугруппа, в которую добавлен нейтральный элемент. Например, множество натуральных чисел с операцией сложения не является моноидом, а с операцией умножения является.
Утверждение (О единственности нейтрального элемента): |
Нейтральный элемент в моноиде единственен. |
Действительно, пусть | и — два нейтральных элемента. Тогда имеем: .
Определение: |
Свободным моноидом (англ. free monoid) | над множеством обозначается как называется моноид над множеством — набором всевозможных элементов, полученных конечным числом применений ассоциативной операции к элементам исходного множества.
Тривиальный пример образуют множество и операция . Тогда .
Другой пример:
, операция — сложение. Тогда .Дадим теперь более формальное определение.
Определение: |
Свободным моноидом над множеством гомоморфизм моноидов такой, что . | называется моноид вместе с отображением при условии, что для любого моноида и для любых отображений существует единственный
Это наглядно показано следующей картинкой.