Алгоритм Балабана — различия между версиями
(→Пункт подробностей =)) |
(→Search In Strip) |
||
| Строка 114: | Строка 114: | ||
Предположим, что все отрезки лежат в полосе <tex>\langle a, b \rangle</tex>. Таким образом в самом начале у нас есть пара <tex>(S, \langle a, b, \rangle)</tex>. | Предположим, что все отрезки лежат в полосе <tex>\langle a, b \rangle</tex>. Таким образом в самом начале у нас есть пара <tex>(S, \langle a, b, \rangle)</tex>. | ||
| − | Что же дальше происходит: множество <tex>S</tex> ''распадается'' в подмножества <tex>Q</tex> и <tex>S'</tex>, после чего лестница <tex>D = (Q, \langle a, b \rangle)</tex> становится полностью соотносимой множеству <tex>S'</tex>. Необходимо найти пересечения отрезков из <tex>D</tex> и <tex>S'</tex>, затем, все пересечения в <tex>S'</tex>. Чтобы найти пересечения отрезков в <tex>S'</tex>, мы ''режем'' полосу <tex>\langle a, b \rangle</tex> и множество <tex>S'</tex> по вертикале <tex>x = c</tex> на полосы <tex>\langle a, | + | Что же дальше происходит: множество <tex>S</tex> ''распадается'' в подмножества <tex>Q</tex> и <tex>S'</tex>, после чего лестница <tex>D = (Q, \langle a, b \rangle)</tex> становится полностью соотносимой множеству <tex>S'</tex>. Необходимо найти пересечения отрезков из <tex>D</tex> и <tex>S'</tex>, затем, все пересечения в <tex>S'</tex>. Чтобы найти пересечения отрезков в <tex>S'</tex>, мы ''режем'' полосу <tex>\langle a, b \rangle</tex> и множество <tex>S'</tex> по вертикале <tex>x = c</tex> на полосы <tex>\langle a, c \rangle</tex>, <tex>\langle c, b \rangle</tex> и множества <tex>S'_{ls}</tex>, <tex>S'_{rs}</tex> соответственно, где c является медианой вершин отрезков, между <tex>a</tex> и <tex>b</tex>. Затем мы рекурсивно вызываем функцию к парам <tex>(S'_{ls}, \langle a, c \rangle)</tex> и <tex>(S'_{rs}, \langle c, b \rangle)</tex>. Ключевым является тот факт, что согласно [[#lemma1|лемме]] <tex>|S'| \le Ends_{a, b}(S') + |Int(D, S')|</tex>, таким образом, число дополнительных отрезков, появляющихся после ''разрезаний'' пропорционально числу найденных пересечений. |
===Пункт подробностей =)=== | ===Пункт подробностей =)=== | ||
Версия 14:54, 13 ноября 2013
Алгоритм Балабана — детерминированный алгоритм, позволяющий по множеству отрезков на плоскости получить множество точек, в которых эти отрезки пересекаются.
Содержание
Введение
Решение задачи по поиску множества пересечений отрезков является одной из главных задач вычислительной геометрии. Тривиальный детерминированный алгоритм имеет временную сложность , и его суть заключается в проверке попарного пересечения отрезков. Сложнее, но эффективнее алгоритм Бентли-Оттмана [1] с оценкой сложности , в основе которого лежит метод заметающей прямой. Алгоритм, предложенный Чазелле и Едельсбруннером [2], имеет лучшую оценку , но в отличие от предыдущих методов требует квадратичной памяти. Оптимальный детерминированный алгоритм был предложен Балабаном [3] с временной оценкой сложности и памяти, где К - число пересекающихся отрезков. При количестве отрезков равным 2000 и большому количеству пересечений целесообразно использовать алгоритм Балабана. Однако в результате громоздкости и высокой сложности реализации алгоритма в большинстве практических задач используется алгоритм заметающей прямой Бентли-Оттмана.
Основные понятия
Введем некоторые обозначения. Пусть - множество всех точек пересечения отрезков из множества , а - количество таких пересечений ;
Через обозначим вертикальную полосу, которая ограничена прямыми и , а через — отрезок с вершинами в точках с абсциссами и .
Рассмотрим взаимное расположение вертикальной полосы и отрезка .
| Определение: |
| Будем говорить, что отрезок , с вершинами в точках с абсциссами и :
- содержит(span) полосу , если ; |
| Определение: |
| Два отрезка и называются пересекающимися внутри полосы , если их точка пересечения лежит в пределах этой полосы. Для двух множеств отрезков и определим множество как . |
Обозначения и будут использоваться для описания подмножеств и , состоящих из пересекающихся пар отрезков в пределах полосы . Далее скобки используются для определения неупорядоченных наборов, а скобки используются для определения упорядоченных множеств.
Введем отношение порядка на множестве отрезков если оба отрезка пересекают вертикальную линию и точка пересечения этой прямой с отрезком лежит ниже точки пересечения с .
− любой отрезок из содержит полосу ;
− нет пересечений отрезков внутри лестницы;
− упорядочена по отношению .
| Определение: |
| Будем называть лестницу полностью соотносимой множеству отрезков , если каждый отрезок из либо не пересекает полосу , либо пересекает хотя бы одну из ступенек из множества . |
| Лемма: |
Если лестница полностью соотносима множеству отрезков , где состоит из отрезков, пересекающих полосу , тогда , где это число вершин отрезков , находящихся в пределах полосы . |
| Определение: |
| Если точка отрезка лежит между ступеньками и , тогда число называется местоположением на лестнице и обозначается как |
| Утверждение: |
Имея лестницу и множество отрезков , множество можно найти за время . Однако, если упорядочено отношением , где , тогда можно найти за время . |
Алгоритм
Введем несколько дополнительных функций, чтобы упростить основной алгоритм:
Split
Функция разделяет входное множество отрезков , пересекающих некоторую полосу , на подмножества и так, что лестница полностью соотносима множеству отрезков .
Пусть , где for do if отрезок не пересекает последний отрезок из внутри полосы и при этом содержит её then добавить в конец else добавить в конец
Эта функция работает за времени.
Search In Strip
Зная мы можем найти и используя следующую рекурсивную функцию:
if then return Найдем
Здесь, это функция объединения множеств и , упорядоченных по отношению . Время выполнения эквивалентно сумме времён каждого её запуска. Очевидно, что время работы -той функции, будет равно , где это соответствующие наборы .
Учитывая лемму, заключаем, что функция работает за .
Предположим, что все отрезки лежат в полосе . Таким образом в самом начале у нас есть пара . Что же дальше происходит: множество распадается в подмножества и , после чего лестница становится полностью соотносимой множеству . Необходимо найти пересечения отрезков из и , затем, все пересечения в . Чтобы найти пересечения отрезков в , мы режем полосу и множество по вертикале на полосы , и множества , соответственно, где c является медианой вершин отрезков, между и . Затем мы рекурсивно вызываем функцию к парам и . Ключевым является тот факт, что согласно лемме , таким образом, число дополнительных отрезков, появляющихся после разрезаний пропорционально числу найденных пересечений.
Пункт подробностей =)
Давайте разберемся с алгоритмом более подробно:
Не умаляя общности, предположим, что все пересечения и вершины отрезков имеют разные абсциссы (в конечном счете, их можно будет отсортировать введением дополнительных свойств). Будем рассматривать целые координаты на промежутке . Пусть и будут координатами вершин -того отрезка.(???)
Основная задача нашего алгоритма, это рекурсивная функция . Мы соединяем каждый вызов функции с узлом некоего двоичного дерева (далее рекурсивное дерево). Мы отмечаем все значения, множества и параметры вызова соответствующим узлом. В результате, мы проанализируем наш алгоритм рекурсивного дерева. Обозначим множество всех вершин рекурсивного дерева за , а множество внутренних вершин за . (WAT??)
Отсортировать вершин по координатам и найти ;
if then ; ; break;
Split S. into Q. and S: so that staircase Du := (Qv, (b, e)) be complete relative to S:; Find lnt(DV , S:); c:= L(b + e)/2J; Place segments of S: crossing the strip (b, c) into S[~(V ) and the strip (c, e) into s~.(~); TreeSearch(S1.(V), b, c); TreeSearch(ST,(V), c, e); end procedure.
Примечания
Литература
Т.Вознюк, В.Терещенко — К построению эффективного решения задачи пересечения отрезков
Ф.Препарата, М.Шеймос — Вычислительная геометрия