Алгоритм Балабана — различия между версиями
(→Основной алгоритм) |
|||
| Строка 150: | Строка 150: | ||
Отсюда и дальше <tex>ls(v)</tex>, <tex>rs(v)</tex> и <tex>ft(v)</tex> означают, соответственно, левого сына, правого сына, и отцовскую вершину узла <tex>v</tex>. | Отсюда и дальше <tex>ls(v)</tex>, <tex>rs(v)</tex> и <tex>ft(v)</tex> означают, соответственно, левого сына, правого сына, и отцовскую вершину узла <tex>v</tex>. | ||
Наша задача показать, что все операции с узлом <tex>v</tex> происходят за <tex>O(|S_v) + |Int(D_v, S_v')| + (a_v - b_v)logN)</tex>, и чтобы показать это, возьмем во внимание, что <tex>\sum_v |S_v| = O(N \cdot logN + K)</tex> (очевидно, что <tex>\sum_v |Int(D_v, S_v')| \le K</tex>). | Наша задача показать, что все операции с узлом <tex>v</tex> происходят за <tex>O(|S_v) + |Int(D_v, S_v')| + (a_v - b_v)logN)</tex>, и чтобы показать это, возьмем во внимание, что <tex>\sum_v |S_v| = O(N \cdot logN + K)</tex> (очевидно, что <tex>\sum_v |Int(D_v, S_v')| \le K</tex>). | ||
| + | |||
| + | [[Файл:Balaban_pic_2.png|280px|thumb|right|<tex>S_v = (s_1, s_2, s_3, s_4, s_5)</tex>, <tex>L_v = (s_1, s_3)</tex>, <tex>R_v = (s_3, s_4)</tex>, <tex>I_v = (s_2, s_5)</tex>]] | ||
Функция <tex>TreeSearch</tex> похожа на функцию <tex>SearchInStrip</tex>. Основная разница заключается в том, что <tex>SearchInStrip</tex> вызывает себя без изменения полосы, когда <tex>TreeSearch</tex> делит полосу на две части, после чего рекурсивно вызывает себя для них. Другое отличие заключается в том, что множество <tex>S_v</tex> не упорядочено так же, как <tex>L</tex>. В результате мы не можем напрямую использовать функцию <tex>Split</tex> для эффективного деления <tex>S_v</tex>. | Функция <tex>TreeSearch</tex> похожа на функцию <tex>SearchInStrip</tex>. Основная разница заключается в том, что <tex>SearchInStrip</tex> вызывает себя без изменения полосы, когда <tex>TreeSearch</tex> делит полосу на две части, после чего рекурсивно вызывает себя для них. Другое отличие заключается в том, что множество <tex>S_v</tex> не упорядочено так же, как <tex>L</tex>. В результате мы не можем напрямую использовать функцию <tex>Split</tex> для эффективного деления <tex>S_v</tex>. | ||
Версия 21:53, 14 ноября 2013
Алгоритм Балабана — детерминированный алгоритм, позволяющий по множеству отрезков на плоскости получить множество точек, в которых эти отрезки пересекаются.
Содержание
Введение
Решение задачи по поиску множества пересечений отрезков является одной из главных задач вычислительной геометрии. Тривиальный детерминированный алгоритм имеет временную сложность , и его суть заключается в проверке попарного пересечения отрезков. Сложнее, но эффективнее алгоритм Бентли-Оттмана [1] с оценкой сложности , в основе которого лежит метод заметающей прямой. Алгоритм, предложенный Чазелле и Едельсбруннером [2], имеет лучшую оценку , но в отличие от предыдущих методов требует квадратичной памяти. Оптимальный детерминированный алгоритм был предложен Балабаном [3] с временной оценкой сложности и памяти, где К - число пересекающихся отрезков. При количестве отрезков равным 2000 и большому количеству пересечений целесообразно использовать алгоритм Балабана. Однако в результате громоздкости и высокой сложности реализации алгоритма в большинстве практических задач используется алгоритм заметающей прямой Бентли-Оттмана.
Основные понятия
Введем некоторые обозначения. Пусть - множество всех точек пересечения отрезков из множества , а - количество таких пересечений ;
Через обозначим вертикальную полосу, которая ограничена прямыми и , а через — отрезок с вершинами в точках с абсциссами и .
Рассмотрим взаимное расположение вертикальной полосы и отрезка .
| Определение: |
| Будем говорить, что отрезок , с вершинами в точках с абсциссами и :
- содержит(span) полосу , если ; |
| Определение: |
| Два отрезка и называются пересекающимися внутри полосы , если их точка пересечения лежит в пределах этой полосы. Для двух множеств отрезков и определим множество как . |
Обозначения и будут использоваться для описания подмножеств и , состоящих из пересекающихся пар отрезков в пределах полосы . Далее скобки используются для определения неупорядоченных наборов, а скобки используются для определения упорядоченных множеств.
Введем отношение порядка на множестве отрезков если оба отрезка пересекают вертикальную линию и точка пересечения этой прямой с отрезком лежит ниже точки пересечения с .
− любой отрезок из содержит полосу ;
− нет пересечений отрезков внутри лестницы;
− упорядочена по отношению .
| Определение: |
| Будем называть лестницу полностью соотносимой множеству отрезков , если каждый отрезок из либо не пересекает полосу , либо пересекает хотя бы одну из ступенек из множества . |
| Лемма: |
Если лестница полностью соотносима множеству отрезков , где состоит из отрезков, пересекающих полосу , тогда , где это число вершин отрезков , находящихся в пределах полосы . |
| Определение: |
| Если точка отрезка лежит между ступеньками и , тогда число называется местоположением на лестнице и обозначается как |
| Утверждение: |
Имея лестницу и множество отрезков , множество можно найти за время . Однако, если упорядочено отношением , где , тогда можно найти за время . |
Алгоритм
Введем несколько дополнительных функций, чтобы упростить основной алгоритм:
Split
Функция разделяет входное множество отрезков , пересекающих некоторую полосу , на подмножества и так, что лестница полностью соотносима множеству отрезков .
Пусть , где for do if отрезок не пересекает последний отрезок из внутри полосы и при этом содержит её then добавить в конец else добавить в конец
Эта функция работает за времени.
Search In Strip
Зная мы можем найти и используя следующую рекурсивную функцию:
if then return Найдем
Здесь, это функция объединения множеств и , упорядоченных по отношению . Время выполнения эквивалентно сумме времён каждого её запуска. Очевидно, что время работы -той функции, будет равно , где это соответствующие наборы .
Учитывая лемму, заключаем, что функция работает за .
Предположим, что все отрезки лежат в полосе . Таким образом в самом начале у нас есть пара . Что же дальше происходит: множество распадается в подмножества и , после чего лестница становится полностью соотносимой множеству . Необходимо найти пересечения отрезков из и , затем, все пересечения в . Чтобы найти пересечения отрезков в , мы режем полосу и множество по вертикале на полосы , и множества , соответственно, где c является медианой вершин отрезков, между и . Затем мы рекурсивно вызываем функцию к парам и . Ключевым является тот факт, что согласно лемме , таким образом, число дополнительных отрезков, появляющихся после разрезаний пропорционально числу найденных пересечений.
Основной алгоритм
Давайте разберемся с алгоритмом более подробно:
Не умаляя общности, предположим, что все пересечения и вершины отрезков имеют разные абсциссы (в конечном счете, их можно будет отсортировать введением дополнительных свойств). Будем рассматривать целые координаты на промежутке . Пусть и будут координатами вершин -того отрезка.
Основная задача нашего алгоритма, это рекурсивная функция . Мы соединяем каждый вызов функции с узлом некоего двоичного дерева (далее рекурсивное дерево). Мы отмечаем все значения, множества и параметры вызова соответствующим узлом. В результате, мы проанализируем наш алгоритм рекурсивного дерева. Обозначим множество всех вершин рекурсивного дерева за , а множество внутренних вершин за .
Отсортируем вершин по координатам и найдем ;
if then отсортируем по отношению ; ; return; Разделим на и так, что лестница будет полностью соотносима множеству ; Найдем ; ; Разделим отрезки из на пересекающих полосу и полосу ; ; ;
Отсюда и дальше , и означают, соответственно, левого сына, правого сына, и отцовскую вершину узла . Наша задача показать, что все операции с узлом происходят за , и чтобы показать это, возьмем во внимание, что (очевидно, что ).
Функция похожа на функцию . Основная разница заключается в том, что вызывает себя без изменения полосы, когда делит полосу на две части, после чего рекурсивно вызывает себя для них. Другое отличие заключается в том, что множество не упорядочено так же, как . В результате мы не можем напрямую использовать функцию для эффективного деления .
Чтобы решить эту проблему, представим как объединение трех множеств: множества упорядоченного по отношению , неупорядоченного множества , и множества упорядоченного по отношению . Расположим отрезки из , пересекающие границу во множество , отрезки пересекающие во множество , и внутренние отрезки во множество .
Примечания
Литература
Т.Вознюк, В.Терещенко — К построению эффективного решения задачи пересечения отрезков
Ф.Препарата, М.Шеймос — Вычислительная геометрия