Meet-in-the-middle — различия между версиями
Shersh (обсуждение | вклад) м |
Shersh (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Meet-in-the-middle''' (Встреча в середине) — это метод решения уравнения вида <tex> f({x}) = g({y}) </tex>, где <tex> x \in {X} </tex> и <tex> y \in {Y} </tex>, который работает за время <tex> O((X + Y | + | '''Meet-in-the-middle''' (Встреча в середине) — это метод решения уравнения вида <tex> f({x}) = g({y}) </tex>, где <tex> x \in {X} </tex> и <tex> y \in {Y} </tex>, который работает за время <tex> O(F(X) + Y \cdot G_X(y))</tex>, где <tex> F(X) </tex> {{---}} время построения множества <tex> X </tex>, <tex> G_X(Y) </tex> {{---}} время поиска элемента <tex> x </tex> в множестве <tex> X </tex>, удовлетворяющее решению при заданном <tex> y </tex>, или проверка, что такого <tex> x </tex> не существует. |
}} | }} | ||
'''Meet-in-the-middle''' разбивает задачу пополам и решает всю задачу через частичный расчет половинок. Он работает следующим образом: переберем все возможные значения <tex> {x} </tex> и запишем пару значений <tex> ({x},{f({x})}) </tex> в множество. Затем будем перебирать всевозможные значения <tex> y </tex>, для каждого из них будем вычислять <tex> g(y) </tex>, которое мы будем искать в нашем множестве. Если в качестве множества использовать отсортированный массив, а в качестве функции поиска {{---}} [[Целочисленный двоичный поиск | бинарный поиск]], то время работы нашего алгоритма составляет <tex> {O(X\log{X})} </tex> на сортировку, и <tex> {O(Y\log{Y})} </tex> на двоичный поиск, что дает в сумме <tex>{O((X + Y)\log{X}})</tex>. | '''Meet-in-the-middle''' разбивает задачу пополам и решает всю задачу через частичный расчет половинок. Он работает следующим образом: переберем все возможные значения <tex> {x} </tex> и запишем пару значений <tex> ({x},{f({x})}) </tex> в множество. Затем будем перебирать всевозможные значения <tex> y </tex>, для каждого из них будем вычислять <tex> g(y) </tex>, которое мы будем искать в нашем множестве. Если в качестве множества использовать отсортированный массив, а в качестве функции поиска {{---}} [[Целочисленный двоичный поиск | бинарный поиск]], то время работы нашего алгоритма составляет <tex> {O(X\log{X})} </tex> на сортировку, и <tex> {O(Y\log{Y})} </tex> на двоичный поиск, что дает в сумме <tex>{O((X + Y)\log{X}})</tex>. |
Версия 20:40, 15 ноября 2013
Определение: |
Meet-in-the-middle (Встреча в середине) — это метод решения уравнения вида | , где и , который работает за время , где — время построения множества , — время поиска элемента в множестве , удовлетворяющее решению при заданном , или проверка, что такого не существует.
Meet-in-the-middle разбивает задачу пополам и решает всю задачу через частичный расчет половинок. Он работает следующим образом: переберем все возможные значения бинарный поиск, то время работы нашего алгоритма составляет на сортировку, и на двоичный поиск, что дает в сумме .
и запишем пару значений в множество. Затем будем перебирать всевозможные значения , для каждого из них будем вычислять , которое мы будем искать в нашем множестве. Если в качестве множества использовать отсортированный массив, а в качестве функции поиска —Содержание
Задача о нахождение четырех чисел с суммой равной нулю
Дан массив целых чисел
. Требуется найти любые числа, сумма которых равна (одинаковые элементы могут быть использованы несколько раз).Например :
. Решением данной задачи является, например, четверка чисел или .Наивный алгоритм заключается в переборе всевозможных комбинаций чисел. Это решение работает за
. Теперь, с помощью Meet-in-the-middle мы можем сократить время работы до .Для этого заметим, что сумму бинарным поиском, есть ли сумма в массиве .
можно записать как . Мы будем хранить все пар сумм в массиве , который мы отсортируем. Далее перебираем все пар сумм и проверяемРеализация
// sum - массив сумм a + b, cnt - счетчик массива sum findsum() for a = 0..N - 1 for b = 0..N - 1 sum[cnt].res = A[a] + B[b] sum[cnt].a = a sum[cnt].b = b cnt++ sort(sum, key = "res") // сортируем sum по полю res for c = 0..N - 1 for d = 0..N - 1 if сумма -(A[c] + A[d]) есть в массив sum index = индекс суммы -(A[c] + A[d]) return (sum[index].a, sum[index].b, A[c], A[d]) return "No solution"
Итоговое время работы
.Если вместо отсортированного массива использовать хэш-таблицу, то задачу можно будет решить за время .
Задача о рюкзаке
Классической задачей является задача о наиболее эффективной упаковке рюкзака. Каждый предмет характеризуется весом (
) и ценностью ( ). В рюкзак, ограниченный по весу, необходимо набрать вещей с максимальной суммарной стоимостью. Для ее решения изначальное множество вещей N разбивается на два равных(или примерно равных) подмножества, для которых за приемлемое время можно перебрать все варианты и подсчитать суммарный вес и стоимость, а затем для каждого из них найти группу вещей из первого подмножества с максимальной стоимостью, укладывающуюся в ограничение по весу рюкзака. Сложность алгоритма . Память .Реализация
Разделим наше множество на две части. Подсчитаем все подмножества из первой части и будем хранить их в массиве
. Отсортируем массив по весу. Далее пройдемся по этому массиву и оставим только те подмножества, для которых не существует другого подмножества с меньшим весом и большей стоимостью. Очевидно, что подмножества, для которых существует другое, более легкое и одновременно более ценное подмножество, можно удалять. Таким образом в массиве мы имеем подмножества, отсортированные не только по весу, но и по стоимости. Тогда начнем перебирать все возможные комбинации вещей из второй половины и находить бинарным поиском удовлетворяющие нам подмножества из первой половине, хранящиеся в массиве .
Реализуем данный алгоритм:
// N - количество всех вещей, w[] - массив весов всех вещей, cost[] - массив стоимостей всех вещей, R - ограничение по весу рюкзака. knapsack() sn = N / 2 fn = N - sn for mask = 0..2 ** sn - 1 for j = 0 .. sn if j-ый бит mask == 1 first[i].w += w[j]; first[i].c += cost[j] сортируем first по весу for i = 0 .. 2 ** sn - 1 if существует такое подмножество с индексом j, что first[j].wfirst[i].w && first[j].c first[i].c удалим множество с индексом i из массива first for mask = 0..2 ** fn - 1 for j = 0..fn if j-ый бит mask == 1 curw += w[j + sn] curcost += cost[j + sn] index = позиция, найденная бинарным поиском в массиве first, подмножества с максимальным весом, не превыщающим R - curv if first[index].w R - curw && first[index].c + curcost > ans ans = first[index].c + curcost return ans
Итоговое время работы
.Задача о нахождении кратчайшего расстояния между двумя вершинами в графе
Еще одна задача, решаемая Meet-in-the-middle — это нахождение кратчайшего расстояния между двумя вершинами, зная начальное состояние, конечное состояние и то, что длина оптимального пути не превышает обхода в ширину. Пусть из каждого состояния у нас есть переходов, тогда бы мы сгенерировали состояний. Асимптотика данного решения составила бы . Meet-in-the-middle помогает снизить асимптотику до .
Алгоритм решения
1. Сгенерируем bfs-ом все состояния, доступные из начала и конца за
или меньше ходов.2. Найдем состояния, которые достижимы из начала и из конца.
3. Найдем среди них наилучшее по сумме длин путей.
Таким образом, bfs-ом из двух концов, мы сгенерируем максимум состояний.