Теорема Фари — различия между версиями
Valery (обсуждение | вклад) |
Valery (обсуждение | вклад) |
||
| Строка 59: | Строка 59: | ||
Получим, что <tex>vw</tex> лежит на <tex>L</tex>. Так как <tex>p</tex> и <tex>q</tex> лежат с разных сторон <tex>L</tex>, ребра, инцидентные <tex>v</tex> и <tex>w</tex>, не пересекаются. | Получим, что <tex>vw</tex> лежит на <tex>L</tex>. Так как <tex>p</tex> и <tex>q</tex> лежат с разных сторон <tex>L</tex>, ребра, инцидентные <tex>v</tex> и <tex>w</tex>, не пересекаются. | ||
По выбору <tex>\varepsilon</tex>, ребра, инцидентные <tex>v</tex> и <tex>w</tex>, не пересекают и другие ребра <tex>G</tex>. Таким образом желаемая укладка графа <tex>G</tex> достигнута. | По выбору <tex>\varepsilon</tex>, ребра, инцидентные <tex>v</tex> и <tex>w</tex>, не пересекают и другие ребра <tex>G</tex>. Таким образом желаемая укладка графа <tex>G</tex> достигнута. | ||
| − | Теперь мы можем удалить | + | Теперь мы можем удалить добавленные нами ребра, оставив в графе лишь исходные (уже прямые) ребра. |
}} | }} | ||
| + | |||
| + | ==Смотри также== | ||
| + | * [[Теорема Понтрягина-Куратовского]] | ||
| + | * [[Укладка графа на плоскости]] | ||
==Ссылки== | ==Ссылки== | ||
Версия 16:56, 18 ноября 2013
Теорема была независимо доказана Клаусом Вагнером (Klaus Wagner) в 1936ом году и Иштваном Фари (István Fáry) в 1948ом году. Иногда ее называют теоремой Фари-Вагнера.
| Определение: |
| Триангуляция графа — представление планарного графа на плоскости в таком виде, что каждая его грань ограничена тремя ребрами (является треугольником). |
| Определение: |
| Разделяющий треугольник — цикл длины в графе , внутри и снаружи которого находятся вершины графа. |
Разделяющий треугольник изображён ниже. Относительно него существует три вида вершин: внешние, внутренние и лежащие на самом треугольнике.
| Теорема (Фари): |
Любой планарный граф имеет плоское представление, в котором все ребра представлены в виде отрезков прямых. |
| Доказательство: |
|
Докажем теорему для плоской триангуляции графа . Ее можно достичь, добавив в необходимое количество ребер. Применим индукцию по числу вершин . База индукции, когда , выполняется тривиальным образом. Предположим, что графы с любым числом вершин , мы можем нарисовать требуемым образом. Рассмотрим ребро , инцидентное внутренней вершине глубочайшего разделяющего треугольника, то есть такого, который не содержит внутри себя других разделяющих треугольников. Если в графе нет разделяющих треугольников, то возьмём любое ребро. Тогда — граница двух граней и . Так как мы взяли вершины внутри самого глубого разделяющего треугольника, то у вершин и может быть только два общих соседа и , причём и не соединены ребром. Пусть и — обход по часовой стрелке ребер, исходящих соостветсвенно из и . Пусть — граф, полученный из стягиванием ребра в вершину . Заменим пары параллельных ребер и на и на . Получим вершину , из которой исходят ребра — по часовой стрелке. Мы получили граф , с меньшим числом вершин равным , то есть его можно уложить на плоскости требуемым образом: все ребра прямые (и сохранен обход по часовой стрелке ребер инцидентных ). Для любого обозначим — круг радиуса , с вершиной в центре. Для каждого соседа вершины в графе обозначим объединение всех отрезков, проведённых из в . Возьмем равным минимуму из всех расстояний от вершины до инцидентных ей вершин и до отрезков, проходящих мимо нее. Тогда получим, что все соседи вершины находятся снаружи и только ребра , инцидентные , могут пересекать . Проведем линию через вершину так, чтобы вершина лежала с одной ее стороны, а — с другой (такая линия существует, иначе рёбра и накладывались бы друг на друга) и никакое из ребер и не лежало на . Ребра и разбивают на две дуги: первая пересекает ребра , а вторая — ребра . пересекает в двух точках. Расположим и в этих точках: на дуге, пересекающей , а с другой стороны. Удалим и инцидентные ей ребра, нарисуем прямые ребра , инцидентные и . Получим, что лежит на . Так как и лежат с разных сторон , ребра, инцидентные и , не пересекаются. По выбору , ребра, инцидентные и , не пересекают и другие ребра . Таким образом желаемая укладка графа достигнута. Теперь мы можем удалить добавленные нами ребра, оставив в графе лишь исходные (уже прямые) ребра. |