Замкнутость КС-языков относительно различных операций — различия между версиями
Igorjan94 (обсуждение | вклад) м (→Разворот) |
Igorjan94 (обсуждение | вклад) м (→Разворот) |
||
Строка 61: | Строка 61: | ||
Для того, чтобы построить КС-грамматику для языка <tex> L^{R} = \{ w^{R} \mid w \in L \} </tex>, необходимо развернуть все правые части правил грамматики для <tex> L </tex>. | Для того, чтобы построить КС-грамматику для языка <tex> L^{R} = \{ w^{R} \mid w \in L \} </tex>, необходимо развернуть все правые части правил грамматики для <tex> L </tex>. | ||
− | Покажем, что <tex>w \in L \ | + | Покажем, что <tex>w \in L \Rightarrow w^{R} \in L^{R}</tex>. Докажем индукцией по длине порождения в грамматике <tex>L</tex>. |
− | '''База'''. <tex>A \underset{L}{\Rightarrow} w</tex> | + | '''База'''. <tex>A \underset{L}{\Rightarrow} w</tex>. |
+ | |||
+ | В грамматике <tex>L</tex> существует правило <tex>A \rightarrow w</tex> и, так как мы развернули все правые части правил, то <tex>A \underset{L^{R}}{\Rightarrow} w^{R}</tex>. | ||
'''Предположение индукции'''. Пусть <tex>A \underset{L}{\Rightarrow}^* w</tex> менее чем за <tex>n</tex> шагов, тогда <tex>A \underset{L^{R}}{\Rightarrow}^* w^{R}</tex>. | '''Предположение индукции'''. Пусть <tex>A \underset{L}{\Rightarrow}^* w</tex> менее чем за <tex>n</tex> шагов, тогда <tex>A \underset{L^{R}}{\Rightarrow}^* w^{R}</tex>. | ||
+ | |||
+ | '''Переход'''. Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A \underset{L}{\Rightarrow}Y_1 Y_2...Y_m \underset{L}{\Rightarrow}^*w</tex>, где <tex> Y_i \in N \cup \Sigma </tex>. Цепочку <tex> w </tex> можно разбить на <tex>w_1 w_2...w_m</tex>, где <tex> Y_i \underset{L}{\Rightarrow}^*w_i</tex>. Так как каждое из порождений <tex> Y_i \underset{L}{\Rightarrow}^*w_i </tex> содержит менее <tex> n </tex> шагов, к ним можно применить предположение индукции и заключить, что <tex> Y_i \underset{L^{R}}{\Rightarrow}^*w_i^{R} </tex>. Так как <tex>A \underset{L}{\Rightarrow}Y_1 Y_2...Y_m</tex>, то <tex>A \underset{L^{R}}{\Rightarrow}Y_m Y_{m - 1}...Y_1</tex>, откуда следует, что <tex> A \underset{L^{R}}{\Rightarrow}^* w^{R} </tex>. | ||
=== Дополнение, пересечение и разность === | === Дополнение, пересечение и разность === |
Версия 16:25, 2 декабря 2013
В отличие от регулярных языков, КС-языки не замкнуты относительно всех теоретико-множественных операций. К примеру, дополнение и пересечение КС-языков не обязательно являются КС-языками.
Здесь и далее считаем, что
и — КС языки.Содержание
Операции с КС-языками
Объединение
Утверждение: |
также является КС-языком. |
Построим КС-грамматику для языка . Для этого рассмотрим соответствующие КС-грамматики для языков и . Пусть стартовые символы в них имеют имена и соответственно. Тогда стартовый символ для обозначим за и добавим правило . Покажем, что В обратную сторону, пусть . В левую сторону: поскольку и есть правило , то, по определению получаем, что . Аналогично и для . . Поскольку — единственные правила, в которых нетерминал присутствует в правой части, то это означает, что либо , либо , что и требовалось доказать. |
Конкатенация
Утверждение: |
— КС-язык. |
Аналогично предыдущему случаю построим КС-грамматику для языка Остальное доказательство аналогично случаю с объединением. . Для этого добавим правило , где и — стартовые символы языков и соответственно. |
Замыкание Клини
Утверждение: |
— КС-язык. |
Если | — стартовый символ КС-грамматики для языка , то добавим в КС-грамматику для языка новый стартовый символ и правила .
Прямой и обратный гомоморфизм
В случае с прямым гомоморфизмом всё просто: строится КС-грамматика, в которой каждый символ
заменяется на .Для доказательства замкнутости обратного гомоморфизма будем делать аналогично доказательству для регулярных языков. Построим МП-автомат для на основе МП-автомата для языка (назовем его ). Новый автомат будет действовать следующим образом:
- Если входное слово закончилось, допускаем или не допускаем его по допускающему состоянию.
- Иначе считываем символ .
- Сохраняем в буфере.
- Запускаем на слове, находящемся в буфере.
- После того, как обработал весь буфер, переходим к пункту 2.
Если рассмотреть более формально, пусть
, тогда .- , где — суффикс (не обязательно собственный) некоторой цепочки для символа . Таким образом, первый компонент состояния является состоянием , а второй — компонентом буфера.
-
- . Когда буфер пуст, может прочитать свой следующий входной символ и поместить в буфер.
- Если , то . Таким образом, всегда имеет возможность имитации перехода , используя голову буфера. Если , то буфер должен быть непустым, но если , то буфер может быть пустым.
определяется следующими правилами:
- Начальным состоянием является , т.е. стартует в начальном состоянии с пустым буфером.
- Допускающими состояниями являются состояния , где .
Таким образом получаем, что
, то есть автомат допускает те и только те слова, которые принадлежат языку .Разворот
Для того, чтобы построить КС-грамматику для языка
, необходимо развернуть все правые части правил грамматики для .Покажем, что
. Докажем индукцией по длине порождения в грамматике .База.
.В грамматике
существует правило и, так как мы развернули все правые части правил, то .Предположение индукции. Пусть
менее чем за шагов, тогда .Переход. Пусть в порождении
шагов, . Тогда оно имеет вид , где . Цепочку можно разбить на , где . Так как каждое из порождений содержит менее шагов, к ним можно применить предположение индукции и заключить, что . Так как , то , откуда следует, что .Дополнение, пересечение и разность
В отличие от регулярных языков, дополнение до КС-языка, пересечение КС-языков и разность КС-языков может не быть КС-языком.
Утверждение: |
не является КС-языком, однако — КС-язык. |
То, что леммы о разрастании. Для можно составить КС-грамматику. | — не КС язык, доказывается с помощью
Утверждение: |
Если , то не является КС-языком. |
Но . По замкнутости КС-языков относительно конкатенации получаем, что и являются КС-языками. , что по лемме о разрастании для КС-языков не является КС-языком. |
Для разности достаточно заметить, что
, поэтому разность КС-языков также необязательно является КС-языком.Более того, задачи определения того, является ли дополнение КС-языка КС-языком и проверки непустоты пересечения КС-языков являются алгоритмически неразрешимыми.
Примеры других операций
Определение: |
Операция также не сохраняет КС-язык таковым. Рассмотрим язык . — КС-язык. Посмотрим, что есть . Пусть . Отсюда следует, что:
А значит, лемме о разрастании КС-языком не является.
, и , и поОперации над КС-языком и регулярным языком
Пересечение
Тем не менее, хоть пересечение двух КС-языков не обязательно является КС-языком, но пересечение КС-языка и регулярного языка — всегда КС-язык. Для доказательства этого построим МП-автомат для пересечения регулярного языка и КС-языка.
Пусть регулярный язык задан своим ДКА, а КС-язык — своим МП-автоматом c допуском по допускающему состоянию. Построим прямое произведение этих автоматов так же, как строилось прямое произведение для двух ДКА.
Более формально, пусть
— регулярный язык, заданный своим ДКА , и — КС-язык, заданный своим МП-автоматом: . Тогда прямым произведением назовем следующий автомат:- . Иначе говоря, состояние в новом автомате — пара из состояния первого автомата и состояния второго автомата.
- Стековый алфавит остается неизменным.
- . Допускающие состояния нового автомата — пары состояний, где оба состояния были допускающими в своем автомате.
- . При этом на стек кладется то, что положил бы изначальный МП-автомат при совершении перехода из состояния ,
видя на ленте символ
и символ на вершине стека.Этот автомат использует в качестве состояний пары из двух состояний каждого автомата, а за операции со стеком отвечает только МП-автомат. Слово допускается этим автоматом
слово допускается и ДКА и МП-автоматом, то есть язык данного автомата совпадает с .Разность
Разность КС-языка и регулярного языка выражается следующим образом:
, а, поскольку регулярные языки замкнуты относительно дополнения, то разность можно выразить через пересечение.Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — C. 302-304 : ISBN 5-8459-0261-4 (рус.)