Алгоритм нахождения Гамильтонова цикла в условиях теорем Дирака и Оре — различия между версиями
Ak57 (обсуждение | вклад) (→Доказательство алгоритма) |
Ak57 (обсуждение | вклад) (→Сложность алгоритма) |
||
Строка 34: | Строка 34: | ||
== Сложность алгоритма == | == Сложность алгоритма == | ||
− | Алгоритм работает за <tex>O(n^2)</tex>. Действительно, количество итераций внешнего цикла <tex>\mathrm{for}</tex> всегда равно <tex>n</tex>. | + | Алгоритм работает за <tex>O(n^2)</tex>. Действительно, количество итераций внешнего цикла <tex>\mathrm{for}</tex> всегда равно <tex>n</tex>. Поиск вершины, удовлетворяющей заданному условию тоже работает за <tex>O(n)</tex>, итого время работы <tex>O(n^2)</tex>. |
== См.также == | == См.также == |
Версия 17:54, 6 декабря 2013
Содержание
Описание алгоритма
Пусть у нас есть граф теоремы Оре или теоремы Дирака, и требуется найти в нем гамильтонов цикл. Поступим следующим образом: заведем очередь и положим в нее все вершины нашего графа(не важно в каком порядке). Теперь раз будем делать следующую операцию:
, удовлетворяющий условию- Если между первой (здесь и далее первая вершина - вершина в голове очереди) и второй вершиной в очереди есть ребро в графе , то перемещаем первую вершину в конец очереди и переходим к следующей итерации.
- Если между первой и второй вершиной в очереди ребра нет, то найдем вершину теорема Оре, либо теорема Дирака, то такая вершина обязательно найдется; чуть позже мы это докажем явно). После чего поменяем в очереди местами вершины и , и , и , и так далее, пока (то есть пробегает все значения от 0 до значения заданного неравенством). Теперь у нас появилось ребро между первой и второй вершинами в очереди (теперь вторая вершина, это та, которая была до разворота на -й позиции), а так же, гарантированно существует ребро между -й и -й вершинами очереди. После этого, так же как и в первом случае, оправляем первую вершину в конец очереди. , где , такую что, ребра (так как у нас для графа выполнена либо
Таким образом после
итераций, мы получаем последовательность (вершины лежащие в очереди), где любые 2 соседние вершины соединены ребром, все вершины графа находятся в этой последовательности, и более того, каждая ровно один раз, а так же существует ребро между последней и первой вершинами очереди, а это и значит, что мы решили поставленную задачу.Псевдокод
Queue queue; // создаем очередь for i = 0 to n - 1 // queue.pushback(v[i]) // добавляем в очередь все вершины графа for k = 0 to n - 1 // пока не проделано нужное количество итераций if !exist(queue.at(0), queue.at(1)) // проверяем существования ребра между первой и второй вершинами очереди queue.swapSubQueue(2, find_vertex()) // если, не существует, то меняем порядок вершин в очереди, со второй до // найденной, удовлетворяющей нас позиции |
Доказательство алгоритма
Для доказательства корректности алгоритма достаточно показать:
- Каждый раз, когда нам надо искать вершину , где , такую что , такая вершина действительно существует.
- После итераций между каждой парой соседних вершин очереди существует ребро.
Докажем первое. Рассмотрим множество теоремы Оре или теоремы Дирака). Из этого следует, что , а это и значит, что искомая вершина существует.
, состоящее из вершин, смежных с , и множество , вершин смежных с . Заметим, что , а , тогда , а значит , в то же время (по условиюДля доказательства второй части, достаточно заметить, что каждую итерацию алгоритма, мы, в случае отсутствия ребра, между
и увеличиваем количество пар соседних вершин в очереди, как минимум на 1(это прямое следствие условия поиска нужной вершины, в случае отсутствия ребра), а такие пар изначально не более . Откуда следует, что после итераций, второе условие будет выполнено.Сложность алгоритма
Алгоритм работает за
. Действительно, количество итераций внешнего цикла всегда равно . Поиск вершины, удовлетворяющей заданному условию тоже работает за , итого время работы .