Антисимметричное отношение — различия между версиями
Dima (обсуждение | вклад) |
Savelin (обсуждение | вклад) (англоязычные термины, ссылка на асимметричность (википедия), внешние ссылки исправлены на внутренние) |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''антисимметричным''', если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> из выполнения отношений <tex>aRb</tex> и <tex>bRa</tex> следует равенство <tex>a</tex> и <tex>b</tex>. | + | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''антисимметричным''' (англ. ''antisymmetric binary relation''), если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> из выполнения отношений <tex>aRb</tex> и <tex>bRa</tex> следует равенство <tex>a</tex> и <tex>b</tex>. |
}} | }} | ||
:<tex>\forall a, b \in X,\ aRb \wedge bRa \; \Rightarrow \; a = b</tex> | :<tex>\forall a, b \in X,\ aRb \wedge bRa \; \Rightarrow \; a = b</tex> | ||
Строка 24: | Строка 24: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''асимметричным''', если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> одновременное выполнение отношений <tex>a R b</tex> и <tex>b R a</tex> невозможно. | + | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''асимметричным''' (англ. ''asymmetric binary relation''), если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> одновременное выполнение отношений <tex>a R b</tex> и <tex>b R a</tex> невозможно. |
}} | }} | ||
== Примеры антисимметричных отношений == | == Примеры антисимметричных отношений == | ||
− | Примерами антисимметричных отношений являются, по определению, все отношения [ | + | Примерами антисимметричных отношений являются, по определению, все отношения [[Отношение порядка|полного и частичного порядка]] (<tex> <, >, \le, \ge </tex> и другие). |
Антисимметрично отношение делимости на натуральных числах (если <tex>a \mid b</tex> и <tex>b \mid a</tex>, то <tex>a=b</tex>) | Антисимметрично отношение делимости на натуральных числах (если <tex>a \mid b</tex> и <tex>b \mid a</tex>, то <tex>a=b</tex>) | ||
Строка 58: | Строка 58: | ||
5 & 0 & 0 & 0 & 0 & 1 \cr } </tex> | 5 & 0 & 0 & 0 & 0 & 1 \cr } </tex> | ||
− | Ориентированный граф, изображающий антисимметричное отношение не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли. | + | Ориентированный граф, изображающий антисимметричное отношение, не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли. |
Если <tex>a</tex> и <tex>b</tex> - некоторые антисимметричные отношения, то антисимметричными также являются отношения: | Если <tex>a</tex> и <tex>b</tex> - некоторые антисимметричные отношения, то антисимметричными также являются отношения: | ||
Строка 74: | Строка 74: | ||
* [http://en.wikipedia.org/wiki/Antisymmetric_relation Антисимметричное отношение {{---}} статья на английской Википедии] | * [http://en.wikipedia.org/wiki/Antisymmetric_relation Антисимметричное отношение {{---}} статья на английской Википедии] | ||
* [http://www.madi.ru/study/kafedra/asu_new/metod_new/mil/tpr09_13.shtml#1 Статья на сайте МАДИ] | * [http://www.madi.ru/study/kafedra/asu_new/metod_new/mil/tpr09_13.shtml#1 Статья на сайте МАДИ] | ||
+ | |||
+ | == Ссылки == | ||
+ | * [http://en.wikipedia.org/wiki/Asymmetric_relation Wikipedia | Asymmetric relation] | ||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Отношения]] | [[Категория: Отношения]] |
Версия 23:16, 11 декабря 2013
Содержание
Основные определения
Определение: |
Бинарное отношение на множестве называется антисимметричным (англ. antisymmetric binary relation), если для любых элементов и множества из выполнения отношений и следует равенство и . |
Или эквивалентное
Определение: |
Бинарное отношение | на множестве называется антисимметричным, если для любых неравных элементов и множества из выполнения отношения следует невыполнение отношения .
Определение антисимметричного отношения как антирефлексивность R.
является избыточным (и потому неверным), поскольку из такого определения также следуетАнтисимметричность отношения не исключает симметричности. Существуют бинарные отношения:
- одновременно симметричные и антисимметричные (отношение равенства);
- ни симметричные, ни антисимметричные;
- симметричные, но не антисимметричные;
- антисимметричные, но не симметричные ("меньше или равно", "больше или равно");
Антирефлексивное антисимметричное отношение иногда называют асимметричным. Следует различать эти два понятия. Формальное определение:
Определение: |
Бинарное отношение на множестве называется асимметричным (англ. asymmetric binary relation), если для любых элементов и множества одновременное выполнение отношений и невозможно. |
Примеры антисимметричных отношений
Примерами антисимметричных отношений являются, по определению, все отношения полного и частичного порядка ( и другие).
Антисимметрично отношение делимости на натуральных числах (если
и , то )Отношение включения на
, где - универсум, антисимметрично ( ).Свойства антисимметричного отношения
Матрица смежности антисимметричного отношения может содержать единицы на главной диагонали, притом если элемент
матрицы равен единице, то элемент равен нулю.Например, если
— матрица смежности отношения " " на ; — матрица смежности отношения делимости на том же множестве , то
Ориентированный граф, изображающий антисимметричное отношение, не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли.
Если
и - некоторые антисимметричные отношения, то антисимметричными также являются отношения:Однако объединение и композиция
и могут не сохранять антисимметричности.См. также
Источники
- Антисимметричное отношение — Википедия
- Антисимметричное отношение — статья на английской Википедии
- Статья на сайте МАДИ