Многочлен Татта — различия между версиями
(→Существование и единственность) |
(→Существование и единственность) |
||
Строка 35: | Строка 35: | ||
}} | }} | ||
− | Далее | + | Далее докажем следующую техническую лемму: |
{{Лемма | {{Лемма | ||
|statement= | |statement= | ||
− | Пусть фиксировано | + | Пусть фиксировано некоторое ребро <tex> e \in E </tex> и множество <tex> A \subset E\backslash {e}</tex>. Обозначим через <tex> \rho _1(A), \rho ^{*}_{1} (A), \overline {\rho _1}(A) </tex> ранги множества <tex> A </tex> в графе <tex> G/e </tex>, а через <tex> \rho _2(A), \rho ^{*}_{2}(A), \overline {\rho _2}(A) </tex> - ранги в графе <tex> G\backslash e </tex>. Тогда для множества <tex> A' = A\cup {e}</tex> выполняются следующие соотношения: |
# Если <tex> e </tex> не петля, то <tex> \rho ^{*}(A') = \rho ^{*}_{1} (A) </tex> и <tex> \overline{\rho} (A') = \overline {\rho _{1}} (A) </tex>; | # Если <tex> e </tex> не петля, то <tex> \rho ^{*}(A') = \rho ^{*}_{1} (A) </tex> и <tex> \overline{\rho} (A') = \overline {\rho _{1}} (A) </tex>; | ||
# Если <tex> e </tex> не мост, то <tex> \rho ^{*}(A') = \rho ^{*}_{2} (A) </tex> и <tex> \overline{\rho} (A') = \overline {\rho _{2}} (A) </tex>; | # Если <tex> e </tex> не мост, то <tex> \rho ^{*}(A') = \rho ^{*}_{2} (A) </tex> и <tex> \overline{\rho} (A') = \overline {\rho _{2}} (A) </tex>; | ||
Строка 50: | Строка 50: | ||
# Если <tex> e </tex> мост, то в графе <tex> G(A') </tex> на одну компоненту связности меньше, чем в <tex> G(A) </tex>, откуда <tex> \rho ^{*}(A') = \rho ^{*} (A) - 1 </tex>. При этом ребро <tex> e </tex> не будет лишним <tex> A' </tex>, поэтому <tex> \overline{\rho} (A') = \overline {\rho} (A) </tex>. | # Если <tex> e </tex> мост, то в графе <tex> G(A') </tex> на одну компоненту связности меньше, чем в <tex> G(A) </tex>, откуда <tex> \rho ^{*}(A') = \rho ^{*} (A) - 1 </tex>. При этом ребро <tex> e </tex> не будет лишним <tex> A' </tex>, поэтому <tex> \overline{\rho} (A') = \overline {\rho} (A) </tex>. | ||
# Если <tex> e </tex> петля, то её исключение не меняет числа компонент связности, поэтому <tex> \rho ^{*}(A') = \rho ^{*} (A) </tex>. По той же причине <tex> e </tex> является лишним, откуда <tex> \overline{\rho} (A') = 1 + \overline {\rho} (A) </tex>. | # Если <tex> e </tex> петля, то её исключение не меняет числа компонент связности, поэтому <tex> \rho ^{*}(A') = \rho ^{*} (A) </tex>. По той же причине <tex> e </tex> является лишним, откуда <tex> \overline{\rho} (A') = 1 + \overline {\rho} (A) </tex>. | ||
+ | }} | ||
+ | |||
+ | Теперь, собственно, докажем связь многочлена Татта с ранговым, откуда будет следовать корректность определения для многочлена Татта: | ||
+ | |||
+ | {{Теорема | ||
+ | |about= | ||
+ | Татта | ||
+ | |statement= | ||
+ | Для любого графа <tex> G </tex> выполнено равенство <br><center><tex> T_G(u + 1, v + 1) = R_G(u, v) | ||
+ | |||
+ | </tex></center> | ||
+ | |proof= | ||
+ | ... | ||
}} | }} |
Версия 14:52, 16 декабря 2013
Основные определения
Определение: |
Рассмотрим граф
| , возможно петлями и кратными рёбрами. Определим многочлен Татта следующими рекурсивными соотношениями:
Разумеется, существование и единственность многочлена Татта ещё нужно доказать. Для того чтобы это сделать, покажем, что многочлену Татта соответствует, так называемый, ранговый многочлен, который уже задаётся явной формулой.
Существование и единственность
Определение: |
Пусть | - некоторый граф. Для множества через будем обозначать граф . Через будем обозначать число компонент связности графа . Рангом множества будем называть число .
Утверждение: |
Ранг множества равен количеству рёбер в любом остовном лесе графа . (под остовным лесом здесь понимается объединение остовных деревьев всех компонент связности, т.е. такой ациклический граф , что и ) |
Действительно, в каждой компоненте связности остовного леса рёбер на одно меньше чем вершин, а общее число вершин равно | .
Теперь определим сам ранговый многочлен:
Определение: |
Ранговый многочлен графа | есть многочлен от двух переменных, определяемый формулой:
Определение: |
Показатели в формуле раногового многочлена тоже имеют некоторый смысл. Величина Величину будем называть числом лишних ребёр: именно столько рёбер можно выкинуть из множества , не меняя число компонент связности. Обозначать эту величину будем через . | равна , т.е. приросту числа компонент связности за счёт перехода к множеству рёбер . Мы будем обозначать эту величину через и называть числом важных для рёбер. (Их важно добавить к , чтобы получилось столько же компонент связности, сколько было изначально).
Далее докажем следующую техническую лемму:
Лемма: |
Пусть фиксировано некоторое ребро и множество . Обозначим через ранги множества в графе , а через - ранги в графе . Тогда для множества выполняются следующие соотношения:
|
Доказательство: |
|
Теперь, собственно, докажем связь многочлена Татта с ранговым, откуда будет следовать корректность определения для многочлена Татта:
Теорема (Татта): |
Для любого графа выполнено равенство |
Доказательство: |
... |