Теорема Татта о существовании полного паросочетания — различия между версиями
(→Критерий Татта) |
|||
Строка 25: | Строка 25: | ||
Возможны два случая: | Возможны два случая: | ||
− | + | * Вершины <tex>x,z</tex> и <tex>y,t</tex> лежат в разных полных подграфах графа <tex>\mathbb{G'} \setminus U</tex>, например, в <tex>H_1</tex> и <tex>H_2</tex>, соответственно. | |
Покроем вершины подграфа <tex>H_1</tex> паросочетанием <tex>M_2</tex>, при этом заметим, что ребро <tex>xz</tex> не входит в это паросочетание. Аналогично покроем паросочетанием <tex>M_1</tex> вершины подрафа <tex>H_2</tex> и ребро <tex>yt</tex> не войдет в это паросочетание. Если остались еще какие-то вершины, не входящие в паросочетание, то выберем для них любые ребра из паросочетаний <tex>M_1</tex> и <tex>M_2</tex>. Таким образом, мы получим полное паросочетание в графе <tex>\mathbb{G'}</tex>, что противоречит тому, как мы изначально построили этот граф. | Покроем вершины подграфа <tex>H_1</tex> паросочетанием <tex>M_2</tex>, при этом заметим, что ребро <tex>xz</tex> не входит в это паросочетание. Аналогично покроем паросочетанием <tex>M_1</tex> вершины подрафа <tex>H_2</tex> и ребро <tex>yt</tex> не войдет в это паросочетание. Если остались еще какие-то вершины, не входящие в паросочетание, то выберем для них любые ребра из паросочетаний <tex>M_1</tex> и <tex>M_2</tex>. Таким образом, мы получим полное паросочетание в графе <tex>\mathbb{G'}</tex>, что противоречит тому, как мы изначально построили этот граф. | ||
− | + | * Вершины <tex>x,y,z</tex> и <tex>t</tex> лежат в одном подграфе графа <tex>\mathbb{G'} \setminus U</tex>. | |
Построим граф <tex>H</tex>, такой что <tex>\mathbb{V_\mathbb{H}}=\mathbb{V_\mathbb{G'}}</tex> и <tex>\mathbb{E_\mathbb{H}}=M_1 \oplus M_2</tex>. Получим, что вершины <tex>x,y,z</tex> и <tex>t</tex> лежат на каком-то чередующемся цикле. В силу симметричности <tex>x</tex> и <tex>z</tex> можно считать, что вершины расположены в порядке <tex>tzxy</tex>. Тогда существует путь <tex>P_1=t..zx..y</tex> и полное паросочетание в нем, но так же существует и путь <tex>P_2=t..zy..x</tex>, содержащий только ребра графа <tex>\mathbb{G'}</tex>. Значит, существует полное паросочетание на вершинах, выбранного подграфа. В остальных подграфах выберем ребра любого из паросочетаний <tex>M_1</tex> и <tex>M_2</tex>. Таким образом, получили полное паросочетание в графе <tex>\mathbb{G'}</tex>, противоречие. | Построим граф <tex>H</tex>, такой что <tex>\mathbb{V_\mathbb{H}}=\mathbb{V_\mathbb{G'}}</tex> и <tex>\mathbb{E_\mathbb{H}}=M_1 \oplus M_2</tex>. Получим, что вершины <tex>x,y,z</tex> и <tex>t</tex> лежат на каком-то чередующемся цикле. В силу симметричности <tex>x</tex> и <tex>z</tex> можно считать, что вершины расположены в порядке <tex>tzxy</tex>. Тогда существует путь <tex>P_1=t..zx..y</tex> и полное паросочетание в нем, но так же существует и путь <tex>P_2=t..zy..x</tex>, содержащий только ребра графа <tex>\mathbb{G'}</tex>. Значит, существует полное паросочетание на вершинах, выбранного подграфа. В остальных подграфах выберем ребра любого из паросочетаний <tex>M_1</tex> и <tex>M_2</tex>. Таким образом, получили полное паросочетание в графе <tex>\mathbb{G'}</tex>, противоречие. | ||
В каждом из возможных случаев получили предположение, значит наше начальное предположение тоже неверно и <tex>G' \setminus U</tex> {{---}} объединение несвязных полных графов, лемма доказана. | В каждом из возможных случаев получили предположение, значит наше начальное предположение тоже неверно и <tex>G' \setminus U</tex> {{---}} объединение несвязных полных графов, лемма доказана. | ||
− | }} | + | }} |
== Теорема Татта == | == Теорема Татта == |
Версия 18:00, 17 декабря 2013
Определение: |
Нечетная компонента связности графа | — компонента связности, содержащая нечетное число вершин.
Определение: |
— число нечетных компонент связности в графе . |
Определение: |
Множество Татта графа | — множество , для которого выполнено условие:
Критерий Татта
Будем дополнять граф
ребрами, пока не получим граф , в котором нет полного паросочетания, но оно появляется при добавлении любого ребра.Пусть
.Очевидно, что
, потому что — не полный граф.Лемма: |
— объединение несвязных полных графов. |
Доказательство: |
Пусть это не так, тогда существуют вершины , такие что , но . Так как , то .В графе существует полное паросочетание , так как граф максимальный по построению. Аналогично, в графе существует полное паросочетание . Так как в нет полного паросочетания, то и .Возможны два случая:
Покроем вершины подграфа паросочетанием , при этом заметим, что ребро не входит в это паросочетание. Аналогично покроем паросочетанием вершины подрафа и ребро не войдет в это паросочетание. Если остались еще какие-то вершины, не входящие в паросочетание, то выберем для них любые ребра из паросочетаний и . Таким образом, мы получим полное паросочетание в графе , что противоречит тому, как мы изначально построили этот граф.
Построим граф В каждом из возможных случаев получили предположение, значит наше начальное предположение тоже неверно и , такой что и . Получим, что вершины и лежат на каком-то чередующемся цикле. В силу симметричности и можно считать, что вершины расположены в порядке . Тогда существует путь и полное паросочетание в нем, но так же существует и путь , содержащий только ребра графа . Значит, существует полное паросочетание на вершинах, выбранного подграфа. В остальных подграфах выберем ребра любого из паросочетаний и . Таким образом, получили полное паросочетание в графе , противоречие. — объединение несвязных полных графов, лемма доказана. |
Теорема Татта
Теорема: |
В графе существует полное паросочетание выполнено условие: |
Доказательство: |
Рассмотрим — полное паросочетание в графе и множество вершин . Одна из вершин каждой нечетной компоненты связности графа соединена ребром паросочетания с какой-то вершиной из . Иначе мы не сможем покрыть паросочетанием все вершины этой компоненты связности и получим противоречие с тем, что полное паросочетание существует по условию теоремы. Таким образом, получаем, что .Пусть для графа выполнено, что , но полного паросочетания в этом графе не существует. Рассмотрим граф и множество вершин (из леммы). Так как число нечетных компонент не увеличивается при добавлении новых ребер, то выполнено, что . По лемме, доказанной выше: — объединение несвязных полных графов.Очевидно, что в каждой четной компоненте связности графа мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества . При этом мы будем использовать различные вершины из , это возможно, так как . Если все вершины множества оказались покрытыми, то мы получили полное паросочетание в графе . Противоречие, так как по построению в нет полного паросочетания.Значит, в осталось какое-то количество непокрытых вершин, при этом их четное число, потому что число вершин в четно, так как и уже покрыто паросочетанием четное число вершин. Так как в множество входят вершины, которые в смежны со всеми остальными, то мы сможем разбить оставшиеся вершины на пары и покрыть их паросочетанием.Таким образом, получили в Значит, начальное предположение не верно, и в полное паросочетание, что противоречит тому, как мы задали этот граф изначально. существует полное паросочетание. |