Циклическое пространство графа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{Определение |definition = '''0-цепь''' — линейная комбинация <math>\Sigma a_{i}v_{i}</math> где <math>a_{i} \in F_2, v_{i} \…»)
(нет различий)

Версия 10:29, 9 октября 2010

Определение:
0-цепь — линейная комбинация [math]\Sigma a_{i}v_{i}[/math] где [math]a_{i} \in F_2, v_{i} \in V[/math].


Определение:
1-цепь — линейная комбинация [math]\Sigma a_{i}e_{i}[/math] где [math]a_{i} \in F_2, e_{i} \in E[/math].


Определение:
Граничный оператор [math]\delta[/math] — линейный оператор,сопоставляющий 1-цепи 0-цепь таким образом, что если e = (u, v) то [math]\delta e = u + v[/math].


Определение:
Циклический вектор — 1-цепь с границей 0.


Определение:
Циклическое пространство графа — пространство образованное множеством всех циклических векторов над полем [math]F_2[/math] = {0,1}.
Теорема:
Циклическое пространство графа линейно.
Доказательство:
[math]\triangleright[/math]

В циклическом пространстве графа задано сложение по модулю два. Нейтральным элементом относительно сложения является пустой граф. Любой элемент циклического пространства сам себе противоположен.

Отсюда выполнение восьми условий линейности очевидно.
[math]\triangleleft[/math]
Лемма:
Степени всех вершин всех циклов циклов циклического пространства четны.
Доказательство:
[math]\triangleright[/math]
Рассмотрим циклический вектор [math]\sigma[/math]. Если степень какой-то вершины нечетна то в [math]\delta \sigma[/math] она входит нечетное число раз, значит [math]\delta \sigma[/math] не равно 0, что противоречит определению циклического вектора.
[math]\triangleleft[/math]
Теорема:
Размерность циклического пространства равна m - n + k, где m - число ребер графа, n - число вершин, k - число компонент связности.
Доказательство:
[math]\triangleright[/math]
Из теоремы о том, что множество фундаментальных циклов относительно любого каркаса T графа G образует базис циклического пространства G следует что размерность циклического пространства равна числу ребер не входящих в каркас. Каркас содержит n - k ребер, значит размерность циклического пространства равна m - n + k.
[math]\triangleleft[/math]