Числа Эйлера I и II рода — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Пример)
Строка 56: Строка 56:
 
<tex dpi = "130">3[12] => [3(4)][12], 3[12(4)];</tex>
 
<tex dpi = "130">3[12] => [3(4)][12], 3[12(4)];</tex>
  
 +
Таким образом мы убеждаемся в верности формулы:
 +
 +
<tex dpi = "160"> \left\langle{4\atop 2}\right\rangle = (2 + 1) \left\langle{3\atop 2}\right\rangle + (4 - 2)\left\langle{4\atop 2}\right\rangle  = 11;</tex>
  
 
==Треугольник чисел Эйлера I рода и явная формула==
 
==Треугольник чисел Эйлера I рода и явная формула==
  
 
==Числа Эйлера II рода==
 
==Числа Эйлера II рода==

Версия 12:28, 18 декабря 2013

Числа Эйлера I рода (Eulerian numbers) — количество перестановок чисел от 1 до n таких, что в каждой из них существует ровно m подъемов. Числа Эйлера I рода обозначают как [math]\langle{n\atop m}\rangle [/math] или же [math]A(n, m)[/math].

Определение:
Пусть [math]a[/math] и [math]b[/math] - элементы некоторой перестановки порядка [math]n[/math] причем [math]a \gt b[/math]. Тогда пара [math](a, b)[/math] называется подъемом (ascent) данной перестановки.


Вывод рекуррентной формулы

Пусть у нас есть некая перестановка [math] \pi = \pi_1, \pi_2...\pi_{n-1} [/math]. Тогда операцией вставки элемента с номером n в какую-либо из позиций мы получим [math]n[/math] перестановок вида [math]\theta = \theta_1, \theta_2...\theta_p, n, \theta_q...\theta_{n-1}[/math]. Далее рассмотрим два случая:

1. Количество подъемов в перестановке [math]\theta[/math] равно количеству подъемов в [math]\pi[/math]. Этого можно добиться, вставляя элемент [math]n[/math] на самое первое место в [math]\theta[/math] (всего [math]\langle{n\atop m}\rangle [/math] возможностей) или перед последним последним элементом каждого подъема(еще [math]k \times [/math][math] \langle{n\atop m}\rangle [/math] раз).

2. Количество подъемов в новой перестановке на один больше предыдущего количества. Этого эффекта добиваемся вставкой элемента [math]n[/math] в конце каждой перестановки или после элемента перестановки со значением [math]n-1[/math]. Таких элементов, как не трудно догадаться, будет [math](n - k)[/math][math]\langle{n\atop m}\rangle[/math].

Тогда рекуррентная формула имеет вид:

[math]\left\langle{n\atop m}\right\rangle = (m + 1)\left\langle{n - 1\atop m}\right\rangle + (n - m)\left\langle{n - 1\atop m - 1}\right\rangle[/math]

Примем также следующие начальные значения:

[math]\langle{n\atop m}\rangle = 0[/math], если [math]m \lt 0[/math] или если [math]n = 0[/math];


Пример

Рассмотрим все перестановки порядка [math]4[/math], в которых есть ровно 2 подъема (в квадратных скобках один или больше подъемов подряд): [math] \left\langle{4\atop 2}\right\rangle = 11: [124]3, [13][24], [134]2, [14][23], 2[134], [23][14], [23][41], [24][13], 3[124], [34][12], 4[123], [/math]

Согласно алгоритму вывода рекуррентной формулы мы можем добавить '4' в следующие позиции всех перестановок порядка [math]3[/math] с двумя подъемами, не увеличив количество подъемов:

[math] \left\langle{3\atop 2}\right\rangle = 1: [123] =\gt (4)[123], [1(4)][23], [12(4)]3 [/math]

Далее рассмотрим все перестановки порядка [math]3[/math] с одним подъемом, причем операцией вставки [math]4[/math] мы будем увеличивать количество перестановок на 1:

[math] \left\langle{3\atop 1}\right\rangle = 4:[/math]

[math][13]2 =\gt [13(4)]2, [13][2(4)];[/math]

[math]2[13] =\gt [2(4)][13], 2[13(4)];[/math]

[math][23]1 =\gt [23(4)]1, [23][1(4)];[/math]

[math]3[12] =\gt [3(4)][12], 3[12(4)];[/math]

Таким образом мы убеждаемся в верности формулы:

[math] \left\langle{4\atop 2}\right\rangle = (2 + 1) \left\langle{3\atop 2}\right\rangle + (4 - 2)\left\langle{4\atop 2}\right\rangle = 11;[/math]

Треугольник чисел Эйлера I рода и явная формула

Числа Эйлера II рода