Лемма Бёрнсайда и Теорема Пойа — различия между версиями
Korektur (обсуждение | вклад) (→Теорема Пойа) |
VolhovM (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. '''Неподвижной точкой''' для элемента <tex>g</tex> называется такой элемент <tex>x</tex>, | + | Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. '''Неподвижной точкой''' (стабилизатором) для элемента <tex>g</tex> называется такой элемент <tex>x</tex>, |
для которого <tex>gx=x</tex>. | для которого <tex>gx=x</tex>. | ||
}} | }} | ||
Строка 15: | Строка 15: | ||
|id=lemmaBerns. | |id=lemmaBerns. | ||
|author=Бёрнсайд | |author=Бёрнсайд | ||
− | |statement=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Будем называть два элемента <tex>x</tex> и <tex>y</tex> эквивалентными, если <tex>x = gy</tex> для некоторого <tex>g \in G</tex>. Тогда число классов эквивалентности равно сумме числа | + | |statement=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Будем называть два элемента <tex>x</tex> и <tex>y</tex> эквивалентными, если <tex>x = gy</tex> для некоторого <tex>g \in G</tex>. Тогда число классов эквивалентности равно сумме числа стабилизаторов по всем элементам группы <tex>G</tex>, делённой на размер этой группы: |
− | <tex> |C| = </tex> <tex dpi = "180">\frac{1} {|G|}</tex><tex>\sum\limits_{k \in G}I(k)</tex>. Где <tex>I(k)</tex> {{---}} количество | + | <tex> |C| = </tex> <tex dpi = "180">\frac{1} {|G|}</tex><tex>\sum\limits_{k \in G}I(k)</tex>. Где <tex>I(k)</tex> {{---}} количество стабилизаторов для элемента <tex>k</tex>. |
|proof= | |proof= | ||
− | Так как <tex>I(k)</tex> - сумма | + | Так как <tex>I(k)</tex> - сумма стабилизаторов элемента <tex>k</tex>, то по определению <tex>\sum\limits_{k \in G}I(k) = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</tex>. |
Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: | Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: | ||
Строка 59: | Строка 59: | ||
<tex>I(k) = l^{P(k)}</tex> | <tex>I(k) = l^{P(k)}</tex> | ||
}} | }} | ||
+ | |||
+ | ==Задача о раскрашивании прямоугольника== | ||
+ | {{Определение | ||
+ | |definition=Выведите формулу для числа раскрасок прямоугольника <tex>[n \times m]</tex> в <tex>k</tex> цветов с точностью до отражения относительно горизонтальной и вертикальной оси. | ||
+ | }} | ||
+ | Решим данную задачу, воспользуясь леммой Бёрнсайда. | ||
+ | |||
+ | '''Решение''' | ||
+ | |||
+ | Для начала определим, какие операции определены на группе <tex>G</tex> --- это операция "отражение относительно горизонтальной оси", обозначим ее как <tex>\alpha</tex> и "отражение относительно вертикальной оси" - <tex>\beta</tex>. | ||
+ | Таким образом, <tex>G</tex> содержит 4 комбинации операций: <tex>G = \{e, \alpha, \beta, \alpha \circ \beta \}</tex>. | ||
+ | |||
+ | Стоит уделить особое внимание тому факту, что никакие иные комбинации функций <tex>\alpha</tex> и <tex>\beta</tex> не были включены в <tex>G</tex>. Это объясняется довольно просто: очевидно то, что операции коммутативны, то есть <tex>\alpha \circ \beta = \beta \circ \alpha</tex>, а также то, что <tex>\alpha \circ \alpha = \beta \circ \beta = e</tex>, тогда любая комбинация данных функций может быть упрощена до вышеперечисленных (в <tex>G</tex>) путем совмещения одинаковых и замены их на <tex>e</tex>. | ||
+ | |||
+ | Отметим также то, что количество раскрасок прямоугольника <tex>[m \times n]</tex> в <tex>k</tex> цветов: | ||
+ | :1. С точностью до операции <tex>\alpha</tex> при нечетном <tex>m</tex> равно количеству раскрасок прямоугольника <tex>[m-1 \times n]</tex> в <tex>k</tex> цветов. | ||
+ | :2. С точностью до операции <tex>\beta</tex> при нечетном <tex>n</tex> равно количеству раскрасок прямоугольника <tex>[m \times n-1]</tex> в <tex>k</tex> цветов. | ||
+ | :3. С точностью до операции <tex>\alpha \circ \beta</tex> при нечетных <tex>n</tex> и <tex>m</tex> равно количеству раскрасок прямоугольника <tex>[m-1 \times n-1]</tex> в <tex>k</tex> цветов (а также частные случаи, когда <tex>n</tex> или <tex>m</tex> нечетные). | ||
+ | |||
+ | Количество стабилизаторов в случае с действием <tex>e</tex> равно <tex>k^{nm}</tex>, так как ни одна раскрашенная клетка не повторилась при действии нулевого действия. Для действий <tex>\alpha</tex> и <tex>\beta</tex> количество раскрасок будет <tex>k^{\lceil \frac{m}{2} \rceil n}</tex> и <tex>k^{{\lceil {\frac{n}{2}} \rceil}m}</tex> соответственно. | ||
+ | |||
+ | Тогда воспользуемся Леммой Бёрнсайда и определим количество таких раскрасок. | ||
+ | |||
+ | :<tex dpi = "180"> |C| = </tex> <tex>\frac{1} {|G|}</tex><tex>\sum\limits_{k \in G}I(k) = \frac{I_1 + I_2 + I_3 + I_4}{4} = </tex> | ||
+ | :<tex dpi = "180"> = \frac{k^{nm}+k^{\lceil \frac{m}{2} \rceil n} + k^{{\lceil {\frac{n}{2}} \rceil}m} + k^{{\lceil {\frac{n}{2}} \rceil}{\lceil \frac{m}{2} \rceil}}}{4}</tex> | ||
==См. также== | ==См. также== |
Версия 00:08, 27 декабря 2013
Иногда требуется провести подсчет комбинаторных объектов с точностью до некоторого отношения эквивалетности. Если это отношение является отношением "с точностью до действия элементом группы", то такой подсчет можно провести с помощью Леммы Бернсайда.
Определение: |
Пусть группа | действует на множество . Неподвижной точкой (стабилизатором) для элемента называется такой элемент , для которого .
Содержание
Лемма Бёрнсайда
Лемма (Бёрнсайд): |
Пусть группа действует на множество . Будем называть два элемента и эквивалентными, если для некоторого . Тогда число классов эквивалентности равно сумме числа стабилизаторов по всем элементам группы , делённой на размер этой группы:
. Где — количество стабилизаторов для элемента . |
Доказательство: |
Так как - сумма стабилизаторов элемента , то по определению .Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: Рассмотрим правую часть равенства: Заметим, что Следовательно:. Очевидно, что Тогда получим:
Откуда следует, что ч.т.д. |
Теорема Пойа
Теорема Пойа является обобщением теоремы Бёрнсайда. Она также позволяет находить количество классов эквивалентности, но уже используя такую величину, как кол-во циклов в перестановке. В основе доказательства теоремы Пойа лежит лемма Бёрнсайда.
Теорема (Пойа): |
,где — кол-во различных классов эквивалентности, - кол-во циклов в перестановке , — кол-во различных состояний одного элемента. |
Доказательство: |
Для доказательства этой теорем достаточно установить следующее равенство
|
Задача о раскрашивании прямоугольника
Определение: |
Выведите формулу для числа раскрасок прямоугольника | в цветов с точностью до отражения относительно горизонтальной и вертикальной оси.
Решим данную задачу, воспользуясь леммой Бёрнсайда.
Решение
Для начала определим, какие операции определены на группе
--- это операция "отражение относительно горизонтальной оси", обозначим ее как и "отражение относительно вертикальной оси" - . Таким образом, содержит 4 комбинации операций: .Стоит уделить особое внимание тому факту, что никакие иные комбинации функций
и не были включены в . Это объясняется довольно просто: очевидно то, что операции коммутативны, то есть , а также то, что , тогда любая комбинация данных функций может быть упрощена до вышеперечисленных (в ) путем совмещения одинаковых и замены их на .Отметим также то, что количество раскрасок прямоугольника
в цветов:- 1. С точностью до операции при нечетном равно количеству раскрасок прямоугольника в цветов.
- 2. С точностью до операции при нечетном равно количеству раскрасок прямоугольника в цветов.
- 3. С точностью до операции при нечетных и равно количеству раскрасок прямоугольника в цветов (а также частные случаи, когда или нечетные).
Количество стабилизаторов в случае с действием
равно , так как ни одна раскрашенная клетка не повторилась при действии нулевого действия. Для действий и количество раскрасок будет и соответственно.Тогда воспользуемся Леммой Бёрнсайда и определим количество таких раскрасок.