Получение следующего объекта — различия между версиями
| Mogikan (обсуждение | вклад)  (→Специализация алгоритма для генерации следующей перестановки) | Mogikan (обсуждение | вклад)   (→Специализация алгоритма для генерации следующего разбиения на слагаемые) | ||
| Строка 152: | Строка 152: | ||
| == Специализация алгоритма для генерации следующего [http://neerc.ifmo.ru/wiki/index.php?title=%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B5_%D0%BE%D0%B1%D1%8A%D0%B5%D0%BA%D1%82%D1%8B#.D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.80.D1.8B_.D0.BA.D0.BE.D0.BC.D0.B1.D0.B8.D0.BD.D0.B0.D1.82.D0.BE.D1.80.D0.BD.D1.8B.D1.85_.D0.BE.D0.B1.D1.8A.D0.B5.D0.BA.D1.82.D0.BE.D0.B2 разбиения на слагаемые] == | == Специализация алгоритма для генерации следующего [http://neerc.ifmo.ru/wiki/index.php?title=%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B5_%D0%BE%D0%B1%D1%8A%D0%B5%D0%BA%D1%82%D1%8B#.D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.80.D1.8B_.D0.BA.D0.BE.D0.BC.D0.B1.D0.B8.D0.BD.D0.B0.D1.82.D0.BE.D1.80.D0.BD.D1.8B.D1.85_.D0.BE.D0.B1.D1.8A.D0.B5.D0.BA.D1.82.D0.BE.D0.B2 разбиения на слагаемые] == | ||
| − | Рассматриваемый алгоритм находит следующее разбиение на слагаемые, при этом разбиение упорядоченно лексикографически. | + | Рассматриваемый алгоритм находит следующее разбиение на слагаемые, при этом разбиение упорядоченно лексикографически по возрастанию. | 
| * Увеличим предпоследнее число на 1, уменьшим последнее на 1. | * Увеличим предпоследнее число на 1, уменьшим последнее на 1. | ||
| ** Если предпоследний элемент стал больше последнего, то увеличиваем предпоследний элемент на величину последнего. | ** Если предпоследний элемент стал больше последнего, то увеличиваем предпоследний элемент на величину последнего. | ||
Версия 21:11, 2 января 2014
Содержание
- 1 Алгоритм
- 2 Специализация алгоритма для генерации следующего битового вектора
- 3 Специализация алгоритма для генерации следующей перестановки
- 4 Специализация алгоритма для генерации следующей мультиперестановки
- 5 Специализация алгоритма для генерации следующего сочетания
- 6 Специализация алгоритма для генерации следующего разбиения на слагаемые
- 7 Специализация алгоритма для генерации следующего разбиения на подмножества
- 8 Ссылки
Алгоритм
| Определение: | 
| Получение следующего объекта — это нахождение объекта, следующего за данным в лексикографическом порядке. | 
Объект называется следующим за , если и не найдется такого , что .
Отсюда понятен алгоритм:
- Находим суффикс минимальной длины, который можно изменить без изменения префикса текущего объекта
- К оставшейся части дописываем минимальный возможный элемент (чтобы было выполнено правило )
- Дописываем минимальный возможный хвост
По построению получаем, что — минимально возможный.
Специализация алгоритма для генерации следующего битового вектора
- Находим минимальный суффикс, в котором есть 0, его можно увеличить, не меняя оставшейся части
- Вместо 0 записываем 1
- Дописываем минимально возможный хвост из нулей
    function nextVector(a:array[1..n] of byte):array[1..n] of byte; // n - длина вектора
     for i = n downto 1
      if a[i] == 0
       a[i] = 1
       for j = i + 1 to n
        a[j] = 0
        break
     return(a);
Пример работы
| 0 | 1 | 0 | 1 | 1 | исходный битовый вектор | 
| ^ | находим элемент 0 (самый правый) | ||||
| 0 | 1 | 1 | 1 | 1 | меняем его на 1 | 
| 0 | 1 | 1 | 0 | 0 | меняем элементы правее на нули | 
| 0 | 1 | 1 | 0 | 0 | следующий битовый вектор | 
Специализация алгоритма для генерации следующей перестановки
- Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример)
- Меняем его с минимальным элементом, большим нашего, стоящим правее
- Перевернем правую часть
 function nextPermutation(a:array[1..n] of integer):array[1..n] of integer; // n - длина перестановки
  for i = n - 1 downto 1
      if a[i] < a[i + 1]
          for j = i + 1 to n
           if (a[j] < a[min]) and (a[j] > a[i])
            min==j
          swap(a[i], a[j])
          reverse(a[i + 1]..a[n])
          break
  return(a);
Пример работы
| 1 | 3 | 2 | 5 | 4 | исходная перестановка | 
| ^ | находим элемент, нарушающий убывающую последовательность | ||||
| ^ | минимальный элемент больше нашего | ||||
| 1 | 3 | 4 | 5 | 2 | меняем их местами | 
| 1 | 3 | 4 | 2 | 5 | разворачивам правую часть | 
| 1 | 3 | 4 | 2 | 5 | следующая перестановка | 
Специализация алгоритма для генерации следующей мультиперестановки
- Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример).
- Меняем его с минимальным элементом, большим нашего, стоящим правее.
- Переворачиваем правую часть.
function nextMultiperm(var b:array[1..N] of integer): array[1..N] of integer;
  var i , j : integer;
  begin
   i := N - 1;
   while (i > 0) and (b[i] >= b[i + 1]) do
    dec(i);
   if i > 0 then
    begin
      j := i + 1;
      while (j < N) and (b[j + 1] > b[i]) do
        inc(j);
      swap(b[i] , b[j]);
      for j := i + 1 to (N + i) div 2 do
        swap(b[j], b[N - j + i + 1]);
      return(b[1..N]);
    end
   else
    begin
      return(null);
    end;
  end;
Пример работы
| 1 | 2 | 3 | 1 | 2 | 3 | Исходная перестановка. | 
| ^ | Находим элемент, нарушающий убывающую последовательность. | |||||
| ^ | Минимальный элемент больше нашего. | |||||
| 1 | 2 | 3 | 1 | 3 | 2 | Меняем их местами. | 
| 1 | 2 | 3 | 1 | 3 | 2 | Следующая мультиперестановка. | 
Специализация алгоритма для генерации следующего сочетания
- Добавим в конец массива с сочетанием N+1 – максимальный элемент.
- Пойдём справа налево. Будем искать номер элемента, который отличается от предыдущего на 2.
- Увеличим найденный элемент на 1, и допишем в конец минимально возможный хвост, если такого элемента нет – на вход было дано последнее сочетание.
function nextChoose(var a:array[1..k] of integer): array[1..k] of integer; // n,k - параметры сочетания.
 var 
  i,j : integer;
  b:array[1..k+1] of integer;
 begin
  for i := 1 to k do
   b[i]:=a[i];
  b[k + 1] := n + 1;
  i := n;
  while (i > 0) and ((b[i + 1] - b[i]) < 2) do
    i := i - 1;
  if i > 0 then
   begin
     b[i] := b[i] + 1;
     for j := i + 1 to k do
      b[j] := b[j - 1] + 1;
     for i := 1 to k do
      a[i] := b[i];
     return(a[1..k]);
   end
  else
   return(null);
 end;
Пример работы
| 1 | 2 | 5 | 6 | 7 | Дописываем 7 в конец сочетания. | 
| 1 | 2 | 5 | 6 | 7 | |
| ^ | Находим элемент i, a[i + 1] - a[ i ] >= 2 | ||||
| 1 | 3 | 5 | 6 | 7 | Увеличиваем его на 1. | 
| 1 | 3 | 4 | 5 | 6 | Дописываем минимальный хвост. | 
| 1 | 3 | 4 | 5 | Следующее сочетание. | 
Специализация алгоритма для генерации следующего разбиения на слагаемые
Рассматриваемый алгоритм находит следующее разбиение на слагаемые, при этом разбиение упорядоченно лексикографически по возрастанию.
-  Увеличим предпоследнее число на 1, уменьшим последнее на 1.
- Если предпоследний элемент стал больше последнего, то увеличиваем предпоследний элемент на величину последнего.
- Если предпоследний элемент меньше последнего, то разбиваем последний на сумму из предпоследнего, пока предпоследний * 2 <= последнего.
 
// b – список, содержащий разбиение данного числа, length – его размер.
function nextPartition(var b: list<int>): list<int>;
 var i : integer;
  begin   
   b[b.size] := b[b.size] - 1;
   b[b.size - 1] := b[b.size - 1] + 1;
   if b[b.size - 1] > b[b.size] then
    begin
      b[b.size - 1] := b[b.size - 1] + b[b.size];
      b.pop();
    end
   else
    begin
     while b[b.size - 1] * 2 <= b[b.size] do
      begin
       b.add(b[b.size] - b[b.size - 1]);
       b[b.size - 1] := b[b.size - 2];
      end;
    end;
   return b;
  end;
Пример работы
| 1 | 1 | 7 | Прибавим 1 + 1, вычтем 7 - 1. | ||
| 1 | 2 | 6 | Проверяем: 2<6, значит разбиваем 6 пока оно не станет <4 | ||
| 1 | 2 | 2 | 4 | ||
| 1 | 2 | 2 | 2 | 2 | |
| 1 | 2 | 2 | 2 | 2 | Следующее разбиение на слагаемые числа 9. | 
| 1 | 4 | 5 | Прибавим 4 + 1, вычтем 5 - 1. | 
| 1 | 5 | 4 | Проверяем: 5>4, значит прибавим к 5 + 4. | 
| 1 | 9 | 4 | Удалим последний элемент. | 
| 1 | 9 | Следующее разбиение на слагаемые числа 10. | 
Специализация алгоритма для генерации следующего разбиения на подмножества
Рассмотрим множество первых n натуральных чисел:
Упорядочим все разбиения на множества лексикографически. Для этого, во-первых, в каждом разбиении упорядочим множества лексикографически. Будем говорить, что подмножество лексикографически меньше подмножества , если верно одно из следующих условий:
- существует такое, что , , для всех если и только если , и существует такое что ;
- и для всех и \ .
Разбиения упорядочены лексикографически следующим образом. Разбиение лексикографически меньше разбиения если существует такое , что .
Рассмотрим алгоритм нахождения лексикографически следующего разбиения на подмножества:
- Будем хранить подмножества списке списков, например, разбиение будет выглядеть так:
| 1 | 2 | 3 | 
| 4 | 5 | 
-  Двигаясь снизу вверх и справа налево, будем удалять элементы, записывая их в отдельный массив. Будем повторять эту операцию, пока не сможем выполнить одно из действий, описанных ниже:
- Заменить рассматриваемый элемент уже удаленным. Из всех подходящих элементов выбираем минимальный. Важное замечание: мы не можем заменить 1ый элемент подмножества, мы можем только удалить его.
- Дополнить рассматриваемое подмножество уже удаленным элементом. Из всех подходящих элементов выбираем минимальный.
 
- Допишем лексикографически минимальный хвост подмножеств из оставшихся элементов.
function nextSets(a:list<list<int>>):list<list<int>>;
 // a - список, содержащий подмножества
 // used - список, в котором мы храним удаленные элементы
 fl = false
 for i = a.size - 1 downto 0
     if  можем добавить в конец подмножества элемент из used
         добавляем
         break
     for j = a[i].size - 1 downto 0
         if можем заменить элемент, другим элементом из списка used 
            заменяем
            fl = true
            break
         used.add(a[i][j])   // удаляем j элемент i подмножества и добавляем его в список
     if (fl) break
 // далее выведем все получившиеся подмножества
 sort(used)
 for i = 0 to used.size - 1
    println(used[i])        // выводим лексикографически минимальных хвост
 return(a);
Пример работы
Рассмотрим следующее разбиение:
| 1 | 2 | 3 | 
| 4 | 5 | 
1 Шаг:
| 1 | 2 | 3 | |
| 4 | 5 | ||
| ^ | Удалили элемент 5. | ||
| used | 
2 Шаг:
| 1 | 2 | 3 | |
| 4 | |||
| ^ | Удалили элемент 4. Так как он является первым в подмножестве, то мы не можем заменить его на другой. | ||
| 5 | used | 
3 Шаг:
| 1 | 2 | 3 | 4 | |
| ^ | Дополнили первое подмножество элементом 4 | |||
| 5 | used | 
4 Шаг: 
| 1 | 2 | 3 | 4 | |
| 5 | Дописали лексикографически минимальный хвост | |||
| used | 
