Алгоритм D* — различия между версиями
Kabanov (обсуждение | вклад) (→Описание (2 версия)) |
Kabanov (обсуждение | вклад) (→Описание (2 версия)) |
||
| Строка 190: | Строка 190: | ||
Теперь эвристическая функция должна поддерживать неравенство треугольника для всех вершин <tex>s,s',s'' \in V</tex>, т.е. <tex>h(s,s'') \leqslant h(s, s') + h(s',s'')</tex>. Так же должно выполняться свойство <tex>h(s,s') \leqslant c^*(s,s')</tex>, где <tex>c^*(s,s')</tex> - стоимость перехода по кратчайшему пути из <tex>s</tex> в <tex>s'</tex>, при этом <tex>s</tex> и <tex>s'</tex> не должны быть обязательно смежными. Такие свойства не противоречат свойствами из первой версии, а лишь усиливают их. | Теперь эвристическая функция должна поддерживать неравенство треугольника для всех вершин <tex>s,s',s'' \in V</tex>, т.е. <tex>h(s,s'') \leqslant h(s, s') + h(s',s'')</tex>. Так же должно выполняться свойство <tex>h(s,s') \leqslant c^*(s,s')</tex>, где <tex>c^*(s,s')</tex> - стоимость перехода по кратчайшему пути из <tex>s</tex> в <tex>s'</tex>, при этом <tex>s</tex> и <tex>s'</tex> не должны быть обязательно смежными. Такие свойства не противоречат свойствами из первой версии, а лишь усиливают их. | ||
| − | |||
| − | |||
| − | |||
| − | |||
=== Псевдокод (Вторая версия) === | === Псевдокод (Вторая версия) === | ||
| Строка 249: | Строка 245: | ||
'''UpdateVertex'''(u); | '''UpdateVertex'''(u); | ||
ComputeShortestPath(); | ComputeShortestPath(); | ||
| + | |||
| + | === Пример работы === | ||
| + | {| class="wikitable" | ||
| + | |- | ||
| + | | style="width:50%;text-align:center;" | [[Файл:Схема_движения_робота_Dstarv2_1.png|350px]] || style="width:50%;text-align:center;" | [[Файл:Схема_движения_робота_Dstarv2_2.png|350px]] | ||
| + | |- | ||
| + | | style="width:50%;text-align:center;" | Итерации в функции '''ComputeShortestPath''' на исходном графе. || style="width:50%;text-align:center;" | Итерации в функции '''ComputeShortestPath''' после изменения графа. (Второй вызов функции) | ||
| + | |} | ||
==Ссылки== | ==Ссылки== | ||
Версия 20:41, 4 января 2014
Алгоритм D* — алгоритм поиска кратчайшего пути во взвешенном ориентированном графе, где структура графа неизвестна заранее или постоянно подвергается изменению. Разработан Свеном Кёнигом и Максимом Лихачевым в 2002 году.
Содержание
Алгоритм LPA*
Постановка задачи
Дан взвешенный ориентированный граф . Даны вершины и . Требуется после каждого изменения графа уметь вычислять функцию для каждой известной вершины
Описание
Функция будет возвращать последнее известное (и самое минимальное) значение расстояния от вершины до .
Будем поддерживать для каждой вершины два вида смежных с ней вершин:
- Обозначим множество как множество вершин, исходящих из вершины .
- Обозначим множество как множество вершин, входящих в вершину .
Ясно, что обязано соблюдаться условие: и .
Функция будет возвращать стоимость перехода из вершины в вершину . При этом .
Теперь опишем функцию . Эта функция будет использовать минимальные расстояние из минимальных расстояний от до вершин, входящих в данную вершины . Потенциально это и будет нам давать информацию о расстояние от до .
Вершина может быть 3-х видов:
- насыщена, если
- переполнена, если
- ненасыщена, если
Очевидно, что если все вершины насыщены, то мы можем найти расстояние от стартовой вершины до любой. Такой граф будем называть устойчивым (насыщенным).
Эвристическая функция теперь должна быть неотрицательная и выполнять неравенство треугольника, т.е. и для всех и
Функция , где - вершина, возвращает вектор из 2-ух значений , .
- .
- .
Если в конце поиска пути , то мы не смогли найти путь от до на текущей итерации. Но после следующего изменения графа путь вполне может найтись.
Псевдокод
Основная функция, описывающая алгоритм
Main():
{
Initialize();
while (true)
{
ComputeShortestPath();
В данный момент мы знаем кратчайший путь из в .
Ждем каких-либо изменений графа.
for всех ориентированных ребер с измененными весами:
{
Обновляем результат функции ;
UpdateVertex();
}
}
}
Теперь опишем составные элементы подробнее Функция инициализации исходного графа устанавливает для всех вершин кроме стартовой () значения и равными бесконечности. Для стартовой . Очевидно, что минимальное расстояние от стартовой вершины до самой себя должно быть равным 0, но . Это сделано для того, чтобы стартовая вершина была ненасыщенной и имела право попасть в приоритетную очередь.
Initialize():
{
//Заведем приоритетную очередь , в которую будем помещать вершины. Сортировка будет производиться по функции .
for
U.Insert(; CalcKey());
}
//Функция . Возвращаемые значения сортируются в лексографическом порядке, т.е. сначала , потом CalcKey(s): { return [; ]; }
UpdateVertex(): { if () if () U.Remove(u); if () U.Insert(; CalcKey()); }
// Функция неоднократно перерасчитывает значение у ненасыщенных вершин в неубывающем порядке их ключей. Такой перерасчет значения будем называть расширением вершины. ComputeShortestPath(): { while (U.TopKey() < CalcKey() OR rhs()) u = U.Pop(); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s); }
Таким образом мы описали алгоритм LPA*. Он неоднократно определяет путь между вершинами и , используя при этом данные из предыдущих итераций. Очевидно, что в худшем случае (а именно когда все ребра вокруг текущей вершины изменили свой вес) алгоритм будет работать как последовательные вызовы алгоритма А* за . Улучшим эту оценку с помощью алгоритма D* lite.
Примечание: на практике же такой подход тоже имеет место на плотных графах (или матрицах), так как в среднем дает оценку .
Алгоритм D*
Пока что был описан только алгоритм LPA*. Он способен неоднократно определять кратчайшее расстояние между начальной и конечной вершинами при любом изменении данного графа. Его первоначальный поиск полностью совпадает с алгоритмом A*, но последующие итерации способны использовать информацию из предыдущих поисков.
Постановка задачи
Теперь на основе LPA* опишем алгоритм D*, который способен определять расстояние между текущей вершиной , в которой, допустим, находится курсор/робот, и конечной вершиной при каждом изменении графа в то время, как наш робот движется вдоль найденного пути.
Описание
Опишем первую версию алгоритма D*. Очевидно, что большинство вершин в процессе движения робота остаются неизменными, поэтому мы можем применить алгоритм LPA*.
Примечание: Большинство функций переходят в данный алгоритм без изменений, поэтому опишем только измененные части.
Для начала мы поменяем направление поиска в графе.
Теперь функция g(s) хранит минимальное известное расстояние от до . Свойства остаются прежними.
Эвристическая функция теперь должна быть неотрицательная и обратно-устойчивая, т.е. и для всех и . Очевидно, что при движении робота изменяется, поэтому данные свойства должны выполняться для всех .
Дополнительное условие выхода также меняется, т.е. при путь не найден на данной итерации. Иначе путь найден и робот может проследовать по нему.
Примечание: Так же следует отметить, что функция Initialize не обязана инициализировать абсолютно все вершины перед стартом алгоритма. Это важно, так как в на практике число вершин может быть огромным и только немногие будут пройдены робот в процессе движения. Так же это дает возможность добавления/удаления ребер без потери устойчивости всех подграфов данного графа.
Псевдокод (Первая версия)
При такой постановке задачи псевдокод не сильно меняется. Но функция Main все-таки претерпевает значительные изменения.
CalcKey(s): return [;];
Initialize(): U = ; for U.Insert(; CalcKey());
UpdateVertex(u): if () rhs(u) = if () U.Remove(u); if () U.Insert(u; CalcKey(u));
ComputeShortestPath(): while (U.TopKey() < CalcKey() OR ) u = U.Pop(); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s);
Main(): Initialize(); ComputeShortestPath(); while () // if () тогда путь на данной итерации не найден. = такая вершина s', что Передвинулись вдоль найденного пути и изменили вершину ; Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним. if (граф изменился) for всех ориентированных ребер с измененными весами: Обновляем результат функции ; UpdateVertex(u); for U.Update(; CalcKey()); ComputeShortestPath();
| Теорема (Свен Кёниг, Об устойчивой насыщенности вершин): |
Функция ComputeShortestPath в данной версии алгоритма расширяет вершину максимум 2 раза, а именно 1 раз, если вершина ненасыщена, и максимум 1 раз, если она переполнена. |
Описание (2 версия)
В первой версии алгоритма была серьезная проблема в том, что для каждой вершины в приоритетной очереди нужно было обновлять ключ суммарно за . Это дорогая операция, так как очередь может содержать огромное число вершин. Воспользуемся оригинальным методом поиска и изменим основной цикл, чтобы избежать постоянного перестроения очереди .
Теперь эвристическая функция должна поддерживать неравенство треугольника для всех вершин , т.е. . Так же должно выполняться свойство , где - стоимость перехода по кратчайшему пути из в , при этом и не должны быть обязательно смежными. Такие свойства не противоречат свойствами из первой версии, а лишь усиливают их.
Псевдокод (Вторая версия)
CalcKey(s): return [;];
Initialize(): U = ; for U.Insert(; CalcKey());
UpdateVertex(u): if () rhs(u) = if () U.Remove(u); if () U.Insert(u; CalcKey(u));
ComputeShortestPath(): while (U.TopKey() < CalcKey() OR ) ; u = U.Pop(); if ( < CalcKey()) U.Insert(;CalcKey()); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s);
Main(): Initialize(); ComputeShortestPath(); while () // if () тогда путь на данной итерации не найден. = такая вершина s', что Передвинулись вдоль найденного пути и изменили вершину ; Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним. if (граф изменился) ; ; for всех ориентированных ребер с измененными весами: Обновляем результат функции ; UpdateVertex(u); ComputeShortestPath();
Пример работы
| |
|
| Итерации в функции ComputeShortestPath на исходном графе. | Итерации в функции ComputeShortestPath после изменения графа. (Второй вызов функции) |