Отношение рёберной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Реберная двусвязность)
Строка 2: Строка 2:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Две вершины <math>U</math> и <math> V</math> графа <math>G</math> называются '''реберно двусвязными''', если между этими вершинами существуют два реберно непересекающихся пути.
+
Две вершины <math>U</math> и <math> V</math> графа <math>G</math> называются '''реберно двусвязными''', если между этими вершинами существуют два реберно не пересекающихся пути.
 
}}
 
}}
  
Строка 17: Строка 17:
 
'''Транзитивность:''' <math>(u, v)\in R </math> и <math>(v, w)\in R  \Rightarrow (u, w)\in R. </math>
 
'''Транзитивность:''' <math>(u, v)\in R </math> и <math>(v, w)\in R  \Rightarrow (u, w)\in R. </math>
  
''Доказательство:'' Пусть <math>P_1,P_2 = u \rightsquigarrow v</math>(реберно непересекащиеся пути) и  <math>Q_1,Q_2 = v \rightsquigarrow w</math> (реберно непересекащиеся пути).
+
''Доказательство:'' Пусть <math>P_1,P_2 = u \rightsquigarrow v</math>(реберно не пересекающиеся пути) и  <math>Q_1,Q_2 = v \rightsquigarrow w</math> (реберно не пересекающиеся пути).
  
 
Выберем вершины <math>x_1</math> и <math>x_2</math> так, что <math>P_1 \and Q_1 = (v \rightsquigarrow x_1),</math> <math>P_2 \and Q_2 = (v \rightsquigarrow x_2)</math> и <math>(v \rightsquigarrow x_1) \and (v \rightsquigarrow x_2) = v.</math>
 
Выберем вершины <math>x_1</math> и <math>x_2</math> так, что <math>P_1 \and Q_1 = (v \rightsquigarrow x_1),</math> <math>P_2 \and Q_2 = (v \rightsquigarrow x_2)</math> и <math>(v \rightsquigarrow x_1) \and (v \rightsquigarrow x_2) = v.</math>
  
Получим два реберно непересекающихся пути <math>R_1 = (u \rightsquigarrow x_1) \or (x_1 \rightsquigarrow w) </math> и <math>R_2 = (u \rightsquigarrow x_2) \or (x_2 \rightsquigarrow w). </math>
+
Получим два реберно не пересекающихся пути <math>R_1 = (u \rightsquigarrow x_1) \or (x_1 \rightsquigarrow w) </math> и <math>R_2 = (u \rightsquigarrow x_2) \or (x_2 \rightsquigarrow w). </math>
  
 
Действительно, <math> (u \rightsquigarrow x_1) \and (u \rightsquigarrow x_2) = u</math>(реберная двусвязность <math>u</math> и <math>v</math>). <math> (x_1 \rightsquigarrow w) \and (x_2 \rightsquigarrow w) = w</math>(реберная двусвязность <math>v</math> и <math>w</math>)
 
Действительно, <math> (u \rightsquigarrow x_1) \and (u \rightsquigarrow x_2) = u</math>(реберная двусвязность <math>u</math> и <math>v</math>). <math> (x_1 \rightsquigarrow w) \and (x_2 \rightsquigarrow w) = w</math>(реберная двусвязность <math>v</math> и <math>w</math>)

Версия 22:41, 10 октября 2010

Реберная двусвязность

Определение:
Две вершины [math]U[/math] и [math] V[/math] графа [math]G[/math] называются реберно двусвязными, если между этими вершинами существуют два реберно не пересекающихся пути.


Теорема:
Отношение реберной двусвязности является отношением эквивалентности на вершинах.
Доказательство:
[math]\triangleright[/math]

Пусть [math]R[/math] - отношение реберной двусвязности.

Рефлексивность: [math](u, u)\in R. [/math] (Очевидно)

Коммутативность: [math](u, v)\in R \Rightarrow (v, u)\in R. [/math] (Очевидно)

Транзитивность: [math](u, v)\in R [/math] и [math](v, w)\in R \Rightarrow (u, w)\in R. [/math]

Доказательство: Пусть [math]P_1,P_2 = u \rightsquigarrow v[/math](реберно не пересекающиеся пути) и [math]Q_1,Q_2 = v \rightsquigarrow w[/math] (реберно не пересекающиеся пути).

Выберем вершины [math]x_1[/math] и [math]x_2[/math] так, что [math]P_1 \and Q_1 = (v \rightsquigarrow x_1),[/math] [math]P_2 \and Q_2 = (v \rightsquigarrow x_2)[/math] и [math](v \rightsquigarrow x_1) \and (v \rightsquigarrow x_2) = v.[/math]

Получим два реберно не пересекающихся пути [math]R_1 = (u \rightsquigarrow x_1) \or (x_1 \rightsquigarrow w) [/math] и [math]R_2 = (u \rightsquigarrow x_2) \or (x_2 \rightsquigarrow w). [/math]

Действительно, [math] (u \rightsquigarrow x_1) \and (u \rightsquigarrow x_2) = u[/math](реберная двусвязность [math]u[/math] и [math]v[/math]). [math] (x_1 \rightsquigarrow w) \and (x_2 \rightsquigarrow w) = w[/math](реберная двусвязность [math]v[/math] и [math]w[/math])

Если [math](u \rightsquigarrow x_1) \and (x_2 \rightsquigarrow w)= [/math] {какой-то путь} или [math](u \rightsquigarrow x_2) \and (x_1 \rightsquigarrow w)= [/math] {какой-то путь}, то тогда вершины [math]v[/math] и [math] w[/math] не связаны отношением реберной двусвязности.
[math]\triangleleft[/math]

Компоненты реберной двусвязности

Определение:
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.


См. также

Отношение вершинной двусвязности