Отношение рёберной двусвязности — различия между версиями
м (→Реберная двусвязность) |
|||
Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Две вершины <math>U</math> и <math> V</math> графа <math>G</math> называются '''реберно двусвязными''', если между этими вершинами существуют два реберно | + | Две вершины <math>U</math> и <math> V</math> графа <math>G</math> называются '''реберно двусвязными''', если между этими вершинами существуют два реберно не пересекающихся пути. |
}} | }} | ||
Строка 17: | Строка 17: | ||
'''Транзитивность:''' <math>(u, v)\in R </math> и <math>(v, w)\in R \Rightarrow (u, w)\in R. </math> | '''Транзитивность:''' <math>(u, v)\in R </math> и <math>(v, w)\in R \Rightarrow (u, w)\in R. </math> | ||
− | ''Доказательство:'' Пусть <math>P_1,P_2 = u \rightsquigarrow v</math>(реберно | + | ''Доказательство:'' Пусть <math>P_1,P_2 = u \rightsquigarrow v</math>(реберно не пересекающиеся пути) и <math>Q_1,Q_2 = v \rightsquigarrow w</math> (реберно не пересекающиеся пути). |
Выберем вершины <math>x_1</math> и <math>x_2</math> так, что <math>P_1 \and Q_1 = (v \rightsquigarrow x_1),</math> <math>P_2 \and Q_2 = (v \rightsquigarrow x_2)</math> и <math>(v \rightsquigarrow x_1) \and (v \rightsquigarrow x_2) = v.</math> | Выберем вершины <math>x_1</math> и <math>x_2</math> так, что <math>P_1 \and Q_1 = (v \rightsquigarrow x_1),</math> <math>P_2 \and Q_2 = (v \rightsquigarrow x_2)</math> и <math>(v \rightsquigarrow x_1) \and (v \rightsquigarrow x_2) = v.</math> | ||
− | Получим два реберно | + | Получим два реберно не пересекающихся пути <math>R_1 = (u \rightsquigarrow x_1) \or (x_1 \rightsquigarrow w) </math> и <math>R_2 = (u \rightsquigarrow x_2) \or (x_2 \rightsquigarrow w). </math> |
Действительно, <math> (u \rightsquigarrow x_1) \and (u \rightsquigarrow x_2) = u</math>(реберная двусвязность <math>u</math> и <math>v</math>). <math> (x_1 \rightsquigarrow w) \and (x_2 \rightsquigarrow w) = w</math>(реберная двусвязность <math>v</math> и <math>w</math>) | Действительно, <math> (u \rightsquigarrow x_1) \and (u \rightsquigarrow x_2) = u</math>(реберная двусвязность <math>u</math> и <math>v</math>). <math> (x_1 \rightsquigarrow w) \and (x_2 \rightsquigarrow w) = w</math>(реберная двусвязность <math>v</math> и <math>w</math>) |
Версия 22:41, 10 октября 2010
Реберная двусвязность
Определение: |
Две вершины | и графа называются реберно двусвязными, если между этими вершинами существуют два реберно не пересекающихся пути.
Теорема: |
Отношение реберной двусвязности является отношением эквивалентности на вершинах. |
Доказательство: |
Пусть - отношение реберной двусвязности.Рефлексивность: (Очевидно)Коммутативность: (Очевидно)Транзитивность: иДоказательство: Пусть (реберно не пересекающиеся пути) и (реберно не пересекающиеся пути).Выберем вершины и так, что иПолучим два реберно не пересекающихся пути иДействительно, Если (реберная двусвязность и ). (реберная двусвязность и ) {какой-то путь} или {какой-то путь}, то тогда вершины и не связаны отношением реберной двусвязности. |
Компоненты реберной двусвязности
Определение: |
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности. |