Теория Рамсея — различия между версиями
 (→Случай двудольного графа)  | 
				 (→Случай двудольного графа)  | 
				||
| Строка 208: | Строка 208: | ||
Покрасим множество <tex>U^{2k-1}</tex> (то есть все <tex>(2k-1)</tex>-элементные подмножества <tex>U</tex>) в <tex>2C^k_{2k-1}</tex>цветов: цветом подмножества <tex>Y</tex> будет пара <tex>(\sigma(Y),c(Y))</tex>. Из выбора размера множества <tex>U</tex> (см. условие) следует, что ceotcndetn такое подмножество <tex>W\subset U</tex>, что <tex>|W|=kn+k-1</tex> и все подмножества <tex>Y\subset W^{2k-1}</tex> имеют одинаковый цвет <tex>(\sigma(Y),c(Y))</tex> (не умаляя общности будем считать, что <tex>\sigma(Y)=\sigma, c(Y)=1)</tex>. Мы найдём погружение графа <tex>H</tex> в <tex>G(W)</tex>, все рёбра в котором покрашены в исходной раскраске в цвет 1 и тем самым докажем лемму.  | Покрасим множество <tex>U^{2k-1}</tex> (то есть все <tex>(2k-1)</tex>-элементные подмножества <tex>U</tex>) в <tex>2C^k_{2k-1}</tex>цветов: цветом подмножества <tex>Y</tex> будет пара <tex>(\sigma(Y),c(Y))</tex>. Из выбора размера множества <tex>U</tex> (см. условие) следует, что ceotcndetn такое подмножество <tex>W\subset U</tex>, что <tex>|W|=kn+k-1</tex> и все подмножества <tex>Y\subset W^{2k-1}</tex> имеют одинаковый цвет <tex>(\sigma(Y),c(Y))</tex> (не умаляя общности будем считать, что <tex>\sigma(Y)=\sigma, c(Y)=1)</tex>. Мы найдём погружение графа <tex>H</tex> в <tex>G(W)</tex>, все рёбра в котором покрашены в исходной раскраске в цвет 1 и тем самым докажем лемму.  | ||
| − | Занумеруем элементы   | + | Занумеруем элементы множества <tex>W</tex> в порядке их следования в <tex>U</tex>: пусть <tex>W=\{w_1,...,w_{kn+k-1}\}</tex>. Введем обозначения  | 
| − | + | ||
| − | Положим (  | + | <tex>t_j=w_kj, T=\{t_1,...,t_n\}, V=\{a_1,...,a_n\}</tex>.  | 
| − | Так как по   | + | |
| + | Положим <tex>\phi(a_i)=t_i</tex>. Остаётся корректно определить <tex>\phi(Z)</tex> для каждого множества <tex>Z\in V^k</tex>. Прежде чем построить <tex>\phi(Z)=Y\in U^{2k-1}</tex> мы положим <tex>S(Y)=\{\phi(x):x\in Z\}</tex>. Из определения погружения понятно, что тогда должно выполняться условие <tex>S(Y)=Y\cap T</tex>, а следовательно, нам нужно дополнить множество <tex>Y</tex> еще <tex>k-1</tex> элементами, не входящими в множество <tex>T</tex>. Мы сделаем это так, чтобы множество порядков номеров элементов множества <tex>S(Y)</tex> среди элементов множества <tex>Y</tex> было <tex>\sigma(Y)=\sigma</tex>: так как <tex>t_i=w_ki</tex>, не входящих в <tex>T</tex> элементов <tex>W</tex> хватит, чтобы обеспечить это.  | ||
| + | |||
| + | Так как по выбору множества <tex>W</tex> мы имеем <tex>\sigma(Y)=\sigma</tex>, множество <tex>S(Y)</tex> выбрано корректно и, опять же в силу выбора <tex>W</tex>, все рёбра особого двудольного графа <tex>G</tex> между вершинами из <tex>S(Y)=\{\phi(x):x\in Z\}</tex> и <tex>Y=\phi(Z)</tex> покрашены в цвет 1. В завершение остается лишь добавить, что при <tex>Z\not=Z'</tex> мы по построению имеем <tex>S(\phi(Z))\not=S(\phi(Z'))</tex>, поэтому <tex>\phi(Z)\not=\phi(Z')</tex>. Таким образом искомое погружение построено.  | ||
}}  | }}  | ||
Версия 01:37, 7 января 2014
Содержание
Числа Рамсея
Основным объектов изучения будут полные графы, ребра которых покрашены в несколько цветов. В дальнейшем, для простоты, полный граф на вершинах будем называть кликой.
| Определение: | 
| Пусть . Число Рамсея — это наименьшее из таких чисел , что при любой раскраске ребер полного графа на вершинах в два цвета найдется клика на вершинах с ребром цвета 1 или клика на вершинах с ребром цвета 2. | 
Существование. Оценки сверху
| Теорема (P. Erdos, G. Szekeres): | 
Пусть -натуральные числа. Тогда . Если оба числа  и -четные, то неравенство строгое.  | 
| Доказательство: | 
| 
 1) Рассмотрим клику на вершинах с рёбрами цветов 1 и 2 и ее произвольную вершину . Тогда либо от вершины отходит хотя бы рёбер цвета 2, либо от вершины отходит хотя бы рёбер цвета 1. Случаи аналогичны, рассмотрим первый случай и клику на вершинах, соединенных с рёбрами цвета 2. На этих вершинах есть либо клика на вершинах с ребрами цвета 1, либо клика на вершинах с рёбрами цвета 2. Во втором случае добавим вершину и получим клику на вершинах с рёбрами цвета 2. Теперь из определения следует неравенство. 2) Рассмотрим клику на вершинах с рёбрами цветов 1 и 2 и его произвольную вершину . Если вершине инцидентны хотя бы рёбер цвета 2 или хотя бы рёбер цвета 1, то мы найдём в графе клику на вершинах с рёбрами цвета 1 или клику на вершинах с рёбрами цвета 2. Остаётся лишь случай, когда вершине инцидентны ровно рёбер цвета 2, то же самое для всех остальных вершин. Это означает, что в графе из рёбер цвета 2 всего вершин и степень каждой вершины равна . Однако, тогда в графе нечётное количество вершин нечётной степени. Противоречие показывает нам, что в случае, когда и — чётные, выполняется неравенство . | 
| Утверждение (Следствие 1): | 
Для натуральных чисел  выполняется равенство   | 
|  
 Очевидно, при или , как и соответствующие числа Рамсея. Индукцией по и при получаем  | 
С помощью неравенства из теоремы можно получить несколько точных значений чисел Рамсея. Отметим что . Так как числа и четны, можно вывести неравенства . И, наконец, , а также
Экстремальные примеры и оценки снизу
Задача нахождения точных значений чисел Рамсея чрезвычайно трудна, этих значении известно немногим больше, чем перечислено выше.
| Определение: | 
| Графом Рамсея назовем такой граф на вершинах, не содержащий ни клики на вершинах ни независимого множества на вершинах(то есть, граф на ребрах цвета 1 из раскраски в два цвета ребер графа , не содержащей ни клики на вершинах с рёбрами цвета 1 ни клики на вершинах с рёбрами цвета 2). | 
Граф — это цикл на пяти вершинах. Экстремальный граф — это цикл на 8 вершинах с проведёнными четырьмя главными диагоналями. Графы и имеют интересную числовую природу.
Так, если ассоциировать 13 вершин графа с элементами поля вычетов по модулю 13, то рёбра будут соединять вычеты разность которых — кубический вычет по модулю 13 (то есть, 1, 5, 8 или 12).
Если считать 17 вершин графа элементами поля вычетов по модулю 17, то рёбра будут соединять вычеты, разность которых — квадратичный вычет по модулю 17 (то есть, 1, 2, 4, 8, 9, 13, 15 или 16).
Существует гипотеза что любой граф изоморфен своему дополнению(или что в раскраске полного графа на вершинах в два цвета граф с рёбрами цвета 1 обязательно изоморфен графу с рёбрами цвета 2). Однако, это не белее чем красивое предположение, в обоснование которого можно положите лишь немногие известные примеры.
| Теорема (P. Erdos): | 
Для любого натурального числа  выполняется неравенство   | 
| Доказательство: | 
| 
 Так как , достаточно рассмотреть случай . Зафиксируем множество различных помеченных вершин . Пусть — деля среди всех графов на вершинах тех графов, что содержат клику на вершинах. Всего графов на наших вершинах, очевидно (каждое из возможных можно провести или не провести). Посчитаем графы с кликой на вершинах так: существует способов выбрать вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведенными, а остальные ребра выбираются произвольным образом. Таким образом, каждый граф с кликой на вершинах будет посчитан причём некоторые даже более одного раза. Количестве графов с кликой оказывается не более, чем . Следовательно, 
 Подставив в неравенстве мы получаем при Предположим, что и разобьём все графы на n вершинах на пары (граф и его дополнение) Так как , то существует пара, в которой ни , ни не содержат клики на вершинах. Рассмотрим раскраску рёбер в два цвета, в которой ребра цвета 1 образуют граф . В такой раскраске нет клики на вершинах ни цвета 1, ни цвета 2, противоречие. Следовательно . | 
| Утверждение (Следствие 2): | 
Для любых  таких, что , выполняется неравенство   | 
Числа Рамсея для раскрасок в несколько цветов
| Определение: | 
| Пусть . Число Рамсея — это наименьшее из всех таких чисел , что при любой раскраске рёбер полного графа на вершинах в цветов для некоторого обязательно найдётся клика на вершинах с рёбрами цвета . | 
| Утверждение: | 
Отметим, что  — это определённое ранее число Рамсея   | 
Обобщение оказывается настолько естественным что по сути не добавляет нам ничего нового: полностью аналогично теореме и следствию можно доказать следующие факты.
| Теорема: | 
Пусть  - натуральные числа. Тогда выполняются следующие утверждения:
 
  | 
| Доказательство: | 
| 
 1) Доказательстве полностью аналогично пункту 1 доказательства теоремы 2) Доказательство аналогично следствию 1. Нужно лишь убедиться в очевидном неравенстве для случая, когда хотя бы одно из чисел равно 1 (левая часть в этом случае равна 1, а правая, очевидно не меньше 1) и заметить, что полиномиальные коэффициенты из очевидных комбинаторных соображений удовлетворяют соотношению: Следовательно, 2 неравенство из данной теоремы выводится из неравенства 1 по индукции.  | 
Числа Рамсея больших размерностей
| Определение: | 
| Пусть , причём . Число Рамсея — наименьшее из всех таких чисел , что при любой раскраске -элементных подмножеств -элементного множества в цветов для некоторого обязательно найдётся такое множество , что и все -элементные подмножества множества имеют цвет . | 
| Определение: | 
| Число называется размерностью числа Рамсея . | 
| Утверждение: | 
1) Нетрудно понять что числа Рамсея размерности 2 — это определённые выше числа Рамсея для клик
2) При количестве цветов, равном 2, этот параметр мы будем опускать и писать  вместо .  | 
| Определение: | 
| Для каждою множества через мы будем обозначать множество всех -элементных подмножеств . | 
| Теорема: | 
Пусть  - натуральные числа, причем , а . Тогда число Рамсея  существует(то есть, конечно)  | 
| Доказательство: | 
| 
 1)Мы будем доказывать теорему по индукции. Начнем со случая . Приступая к доказательству для числа мы будем считать доказанным утверждение теоремы для чисел Рамсея всех меньших размерностей и чисел Рамсея размерности с меньшей суммой . В качестве базы будем использовать случай чисел Рамсея размерности 2 разобранный выше. Итак, мы докажем, что 
 Рассмотрим -элементное множество и выделим в нём элемент . Пусть \{}. Пусть {1,2} — произвольная раскраска в два цвета. Рассмотрим раскраску {1,2}, определённую следующим образом: для каждого множества пусть {a}. Так как , либо существует -элементное подмножество , для которого на всех , либо существует -элементное подмножество , для которого на всех . Случаи аналогичны, рассмотрим первый случай и множество . По индукционному предположен из следует, что либо существует элементное подмножество , для которого на всех , либо существует -элементное подмножество , для которого на всех . Во втором случае искомое подмножество найдено (это ), рассмотрим первый случай и множество {}. Пусть . Если , то и следовательно . Если же , то множество \{} и поэтому \{}. Учитывая, что , мы нашли искомое подмножество и в этом случае. 2)При будем вести индукцию по с доказанной выше базой . При мы докажем неравенство Для этого мы рассмотрим множество на вершинах и произвольную раскраску в цветов. Рассмотрим раскраску {}, в которой цвета раскраски склеены в цвет 0. Тогда существует либо таксе подмножество , что и на всех , либо существует такое -элементное подмножество , что на всех . Во втором случае — искомое подмножество, а в первом случае заметим, что на любом подмножестве из следует . Исходя из размера множества по индукционному предположению получаем, что найдется искомое подмножество множества для одного из цветов  | 
Числа Рамсея для произвольных графов
Еще один способ обобщения классической теории Рамсея — замена клик на произвольные графы-шаблоны.
| Определение: | 
| Пусть — два данных графа. Число Рамсея — это наименьшее из всех таких чисел , что при любой раскраске рёбер полного графа на вершинах в два цвета обязательно найдется подграф, изоморфный с рёбрами цвета 1 или подграф изоморфный с рёбрами цвета 2 | 
В принципе из результатов классической теории Рамсея понятие, что числа обязательно существуют (то есть, конечны).
| Лемма: | 
Пусть , а граф  таков, что  и . Тогда граф  содержит в качестве подграфа любое дерево на  вершинах.  | 
| Доказательство: | 
| 
 Зафиксируем и проведем индукцию по . База для очевидна. Докажем индукционный переход . Рассмотрим произвольное дерево на вершинах, пусть дерево получено из удалением висячей вершины. Пусть — максимальное независимое множестве вершин графа Тогда , следовательно и очевидно . По индукционному предположению, граф содержит в качестве подграфа дерево . Пусть — вершина этого дерева, присоединив к ксторой висячую вершину мы получим дерево . Заметим, что множество {} не является независимым ввиду максимальности . Следовательно, вершина смежна хотя с одной вершиной . Отметим, что и, присоединив вершину к вершине дерева , получим дерево в качестве подграфа графа . | 
| Теорема (V. Chvatal): | 
Пусть  — дерево на  вершинах. Тогда .  | 
| Доказательство: | 
| 
 1) Докажем, что . Для этого предъявим раскраску рёбер графа K_{(m-1)(n-1)}, в которой нет ни одного связного подграфа на вершинах с рёбрами цвета 1 и нет клики на вершинах с рёбрами цвета 2. Разобьём вершины графа на клику по вершине и покрасим все рёбра этих клик в цвет 1. Тогда любой связный подграф с рёбрами цвета 1 содержит не более вершины, в частности, нет подграфа с рёбрами цвета 1, изоморфного . Рёбра цвета 2 (то есть, все оставшиеся рёбра) образуют -дольный граф, в котором, очевидно, нет клики на вершинах. 2) Рассмотрим произвольную раскраску рёбер полного графа в два цвета. Предположим, что не существует клики на вершинах с рёбрами цвета 2. Тогда и . По лемме, граф содержит в качестве подграфа любое дерево на вершинах в частности, дерево, изоморфное . | 
Индуцированная теорема Рамсея
Докажем похожее на теорему Рамсея, но значительно более сложнее утверждение.
| Определение: | 
| Пусть — граф. Граф называется рамсеееским графом для , если при любой раскраске рёбер графа в два цвета существует одноцветный по рёбрам индуцированный подграф графа изоморфный | 
При замене произвольного графа на клику мы получаем частный случай классической теоремы Рамсея. Для клики добавленное слово "индуцированный" ничего не меняет. Но значительно усложняет ситуацию для произвольного графа .
| Теорема (Индуцированная теорема Рамсея): | 
Для любого графа существует рамсеевский граф  | 
Случай двудольного графа
Здесь мы будем рассматривать двудольный граф , как
,
где и — разбиение множества вершин на две доли, а рёбра соединяют вершины из разных долей.
| Определение: | 
| Пусть  — двудольные графы. Инъективное отображение  назовём погружением, если оно удовлетворяет двум условиям. 1)  | 
| Утверждение: | 
Отметим, что если существует погружение  двудольного графа  в двудольный граф  то индуцированный подграф  графа  изоморфен   | 
Напомним, что для множества через мы обозначаем множество всех -элементных подмножеств множества .
| Определение: | 
| Назовем особым двудольный граф вида , где {} | 
| Лемма: | 
Любой двудольный граф может быть погружен в особый двудольный граф.  | 
| Доказательство: | 
| 
 Рассмотрим произвольный двудольный граф , пусть . Положим Построим погружение в особый двудольный граф . Изначально положим . Попробуем построить такое множество , что . По определению погружения и множества , должно выполняться условие:  | 
| Лемма: | ||
Для любого двудольного графа  существует такой двудольный граф , что для любой раскраски рёбер  в два цвета обязательно существует погружение  графа  в граф  в котором все рёбра  одноцветны.  | ||
| Доказательство: | ||
 Ввиду леммы достаточно доказать утверждение для особого двудольного графа . Пусть . Докажем что рамсеевским графом для  будет особый двудольный граф , где Можно считать, что элементы упорядочены. Тогда элементы каждого множества будут упорядочены. Обозначим через множество номеров элементов множества в порядке элементов множества . Тогда может принимать ровно значений. Покрасим множество (то есть все -элементные подмножества ) в цветов: цветом подмножества будет пара . Из выбора размера множества (см. условие) следует, что ceotcndetn такое подмножество , что и все подмножества имеют одинаковый цвет (не умаляя общности будем считать, что . Мы найдём погружение графа в , все рёбра в котором покрашены в исходной раскраске в цвет 1 и тем самым докажем лемму. Занумеруем элементы множества в порядке их следования в : пусть . Введем обозначения . Положим . Остаётся корректно определить для каждого множества . Прежде чем построить мы положим . Из определения погружения понятно, что тогда должно выполняться условие , а следовательно, нам нужно дополнить множество еще элементами, не входящими в множество . Мы сделаем это так, чтобы множество порядков номеров элементов множества среди элементов множества было : так как , не входящих в элементов хватит, чтобы обеспечить это. Так как по выбору множества мы имеем , множество выбрано корректно и, опять же в силу выбора , все рёбра особого двудольного графа между вершинами из и покрашены в цвет 1. В завершение остается лишь добавить, что при мы по построению имеем , поэтому . Таким образом искомое погружение построено. | ||
Случай произвольного графа
Теорема 1С.6. Для щствольного графа Н существует рамсеевский граф, Доказательство. Пусть к — v(H), п — г(к,к). Пронумеруем Еершины графа Н. Построим граф G0 следующим образсм: разместим его вершины е виде таблице п х Ск. Таким образом в каждом столбце Еершины окажутся пронумерованы числами ст 1 до п. как соответствующие строки таблицы. Е каждом столбце одним из Ск способов разместим граф Н (каждый столбец соответствует одному из возможных споссбсЕ размещения). Все рёбра графа G0 будут рёбрами указанных копий графа Н, Граф G0 является п-дсльным, егс естественное разбиение на доли задаётся таблицей: V^(G°) — это вершины, соответствующие г ряду таблицы. Мы последовательно е несколько шагов будем нерестраивать наш граф с помощью леммы 1С.З так. чтобы вершины последующих графов также разбивались на п долей и записывались в виде таблицы. Каждый шаг будет состЕСтстЕСвать однсй паре строк таблицы, Шаг перестройки графа. Итак, пусть мы имеем n-дольный граф Ge, доли которого К = К(Сг) (где г 6 [1--п]) Пусть с парой строк (и. соответственно, долей) i,j мы еше не выполняли шаг. Очеьидно, граф Gitj = Gt{Vi\JVj) дЕудолен и для него не лемме 10.3 сушестЕует двудольный рамсееЕОкий граф Pitj. Еолее того если вершины Р^- разбиты на дес доли Wi и Wj. тс для любой раскраски рёбер в два цЕета существует одвснветнсе Есгружение (р графа Gitj е Pitj в котором (p(Vj) С Wi и ip(Vj) С Wj Назовём таксе погружение одноцветным. Перейдём к построению Ge+1. Заменим К на Wi и Vj на Wj. проведём между зтими долями Есе рёбра графа Pitj. Наша цель в тем, чтобы для любого погружения Gitj в Р^ была содержащая его кспия Ge (причём доли этой копии лежали в соответствующих строках таблицы графа
занумеруем всевозможные погружения Gij в Pitj: пусть это Gjj(l),... Gij{q). Каждому погружению Gitj(s) мы поставим в соответствие отдельные кспии Есех отличных ст Vj, и Vj долей: Vi(s),..., Vn(s). Положим Vi(s) = V(Gij(s))nWi и Vj(s) = V(Gij(s))r\Wj. На зтих долях построим копию графа Ge В результате для каждого погружения графа Gitj в Pitj мы построили свею копию графа Ge. Выделение одноцветного индуцированного подграфа. Итак, докажем, что G = Gc" и есть рамсеевский граф для Н. Пусть Ри - ■ ■ iPci — именно такая нумерация пар строк в нашей таблице, ь порядке которой совершались шаги перестройки графа. Еассмстрим произвольную раскраску рёбер р графа G ь два цвета и докажем следующий факт. Для каждссс £ е [0..С2] существует изоморфные G1 иьсуьирсван- ный поограф графа G. б котором для пар строк ре+г- .., рс% все рёбра между вершинами ссответстеукших пар строк в раскраске р одноцветны Доказательство. Индукция с обратным ходом ст £ — С2п к £ — 0. База для £ = С\ очеЕидна. Докажем переход £ ^ £ — 1 Итак рассмотрим наш изоморфный G1 подграф который мы для простоты будем обозначать Ge и пару строку е нем пусть это строки г и j. a Pij и Gitj — те двудольные графы между этими строками, что списаны в шаге псстроения. Так как Pjj (подграф графа Ge) — рамссеЕСкий граф для Gij. мы межем выбрать одноцветное е раскраске р погружение Gij в Pitj и соответствующая ему по построению копия Ge_1 будет искомым (из построения очевидно, чте индуиирсьанным!) подграфом Ge а значит, bG □ Таким образом, сушестнует иземерфный G0 индуцированный подграф графа G. е кстсрем для каждой пары стрск i,j Есе ребра между Есршинами состЕСтстЕуюших строк одноцветны е раскраске р. Будем обозначать зтот граф просто G0. Бассмстрим граф Кп Еершины которого соответствуют строкам таблицы и искрасим каждое ребро в пест в который покрашены рёбра G0 между соответствующими строками Так как п = r(k,k) существуют к Есршин, между которыми ьсе рёбра одноцветны. Рассмотрим столбец графа G°, е котором Н размещён именно е строчках. соответствующих этим к вершинам. Подграф Н' графа G0 на вершинах этого столбца и соответствующих строчках из с мор фен Н пс построению является индугшрсЕанным подграфом графа G0 и все его рёбра одноцветны в раскраске р. Остаётся лишь заметить, что Я' — индуцированный подграф графа G. □