Примеры неразрешимых задач: задача о выводе в полусистеме Туэ — различия между версиями
Gr1n (обсуждение | вклад) |
Gr1n (обсуждение | вклад) |
||
Строка 29: | Строка 29: | ||
В заданной полусистеме Туэ задача вывода из слова <tex>\alpha </tex> слово <tex> \beta</tex> (word problem for semi-Thue systems) неразрешима. | В заданной полусистеме Туэ задача вывода из слова <tex>\alpha </tex> слово <tex> \beta</tex> (word problem for semi-Thue systems) неразрешима. | ||
|proof= | |proof= | ||
− | Сведем (прим. [[m-сводимость]]) неразрешимую задачу проблемы останова к нашей. Для этого построим по структуре данной из проблемы останова МТ (прим. [[Машина Тьюринга]]) полусистему Туэ. Для | + | Сведем (прим. [[m-сводимость]]) неразрешимую задачу проблемы останова к нашей. Для этого построим по структуре данной из проблемы останова МТ (прим. [[Машина Тьюринга]]) полусистему Туэ. Пусть <tex> q_1 </tex> {{---}} стартовое состояние, <tex> q_n </tex> {{---}} допускающее состояние МТ. Для построение искомой полусистемы будем описывать текущее состояние МТ с помощью строки <tex> |xqy| </tex> , где <tex> q </tex> {{---}} текущее состояние автомата, <tex> xy </tex> {{---}} строка, записанная на ленте. Пусть <tex> s </tex> {{---}} последний символ строки <tex> x </tex>, а <tex> t </tex> {{---}} строки <tex> y </tex>. При этом головка указывает на символ <tex> t </tex>. Тогда текущий шаг МТ можно описать с помощью следующих преобразований строк: |
<tex> | <tex> | ||
Строка 40: | Строка 40: | ||
</tex> | </tex> | ||
}} | }} | ||
+ | |||
+ | В силу конечности множеств состояний автомата и алфавита добавим все подобные правила (представленные выше) в нашу полусистему. Заметим, что в МТ лента у нас бесконечна. Поэтому добавим в нашу систему следующие правила, которые будут эмулировать расширение слова на ленте за счет сдвига маркера <tex> | </tex>: | ||
+ | |||
+ | <tex>q| \rightarrow q0| </tex> <tex> \forall q \in Q \setminus \{q_n\}</tex> | ||
+ | |||
+ | <tex>|q \rightarrow |0q </tex> <tex> \forall q \in Q \setminus \{q_n\}</tex> | ||
+ | |||
== Источники == | == Источники == | ||
* [[wikipedia:Semi-Thue_system | Wikipedia {{---}} Semi-Thue system]] | * [[wikipedia:Semi-Thue_system | Wikipedia {{---}} Semi-Thue system]] | ||
*[http://problem24.wordpress.com/2011/07/07/lecture-on-undecidability-7-the-word-problem-for-thue-systems Undecidability of the word problem for semi-Thue systems ] | *[http://problem24.wordpress.com/2011/07/07/lecture-on-undecidability-7-the-word-problem-for-thue-systems Undecidability of the word problem for semi-Thue systems ] |
Версия 01:35, 14 января 2014
Определение: |
Полусистема Туэ (semi-Thue system) - это формальная система, определяемая алфавитом | и конечным множеством подстановок вида , где - слова из .
Подстановка интерпретируется как правило вывода следующим образом:
по , если слово получается путем подстановки какого-нибудь вместо какого-то вхождения в .
Вывод
из - цепочка , где каждое получается из некоторой подстановкой.
Определение: |
Проблема останова (halting problem) - это задача, в которой требуется по заданной программе проверить завершиться ли она на определенных входных данных. |
Теорема: |
Проблема останова неразрешима. |
Доказательство: |
Доказательство теоремы приведено в примере использования теоремы о рекурсии. |
Теорема: |
В заданной полусистеме Туэ задача вывода из слова слово (word problem for semi-Thue systems) неразрешима. |
Доказательство: |
Сведем (прим. m-сводимость) неразрешимую задачу проблемы останова к нашей. Для этого построим по структуре данной из проблемы останова МТ (прим. Машина Тьюринга) полусистему Туэ. Пусть — стартовое состояние, — допускающее состояние МТ. Для построение искомой полусистемы будем описывать текущее состояние МТ с помощью строки , где — текущее состояние автомата, — строка, записанная на ленте. Пусть — последний символ строки , а — строки . При этом головка указывает на символ . Тогда текущий шаг МТ можно описать с помощью следующих преобразований строк: |
В силу конечности множеств состояний автомата и алфавита добавим все подобные правила (представленные выше) в нашу полусистему. Заметим, что в МТ лента у нас бесконечна. Поэтому добавим в нашу систему следующие правила, которые будут эмулировать расширение слова на ленте за счет сдвига маркера
: