Примеры неразрешимых задач: задача о выводе в полусистеме Туэ — различия между версиями
Gr1n (обсуждение | вклад) |
Gr1n (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
Подстановка <tex>\alpha_i\rightarrow \beta_i</tex> интерпретируется как правило вывода <tex>R_i</tex> следующим образом: | Подстановка <tex>\alpha_i\rightarrow \beta_i</tex> интерпретируется как правило вывода <tex>R_i</tex> следующим образом: | ||
− | <tex>\gamma \vDash \delta</tex> по <tex>R_i</tex> , если слово <tex>\delta</tex> получается путем подстановки | + | <tex>\gamma \vDash \delta</tex> по <tex>R_i</tex> , если слово <tex>\delta</tex> получается путем подстановки <tex>\beta_i</tex> вместо какого-то вхождения <tex>\alpha_i</tex> в <tex>\gamma</tex>. |
Вывод <tex>\beta</tex> из <tex>\alpha</tex> - цепочка <tex>\alpha\vDash\epsilon_1\vDash\epsilon_2\vDash .. \vdash\beta</tex>, где каждое <tex>\epsilon_j</tex> получается из <tex>\epsilon_{j-1}</tex> некоторой подстановкой. | Вывод <tex>\beta</tex> из <tex>\alpha</tex> - цепочка <tex>\alpha\vDash\epsilon_1\vDash\epsilon_2\vDash .. \vdash\beta</tex>, где каждое <tex>\epsilon_j</tex> получается из <tex>\epsilon_{j-1}</tex> некоторой подстановкой. |
Версия 14:23, 14 января 2014
Определение: |
Полусистема Туэ (semi-Thue system) - это формальная система, определяемая алфавитом | и конечным множеством подстановок вида , где - слова из .
Подстановка интерпретируется как правило вывода следующим образом:
по , если слово получается путем подстановки вместо какого-то вхождения в .
Вывод
из - цепочка , где каждое получается из некоторой подстановкой.
Определение: |
Проблема останова (halting problem) - это задача, в которой требуется по заданной программе проверить завершиться ли она на определенных входных данных. |
Теорема: |
Проблема останова неразрешима. |
Доказательство: |
Доказательство теоремы приведено в примере использования теоремы о рекурсии. |
Теорема: |
В заданной полусистеме Туэ задача вывода из слова слово (word problem for semi-Thue systems) неразрешима. |
Доказательство: |
Сведем (прим. m-сводимость) неразрешимую задачу проблемы останова к нашей. Для этого построим по структуре данной из проблемы останова МТ (прим. Машина Тьюринга) полусистему Туэ. Пусть — стартовое состояние, — допускающее состояние МТ. Для построение искомой полусистемы будем описывать текущее состояние МТ с помощью строки , где — текущее состояние автомата, — строка, записанная на ленте. Пусть — последний символ строки , а — первый символ строки . При этом головка указывает на символ . Тогда текущий шаг МТ можно описать с помощью следующих преобразований строк:
В силу конечности множеств состояний автомата ( ) и алфавита ( ) добавим все подобные правила (представленные выше) в нашу полусистему. Заметим, что в МТ лента у нас бесконечна. Поэтому добавим в нашу систему следующие правила, которые будут эмулировать расширение слова на ленте за счет сдвига маркера :и для И наконец добавим в наш набор те правила, которые позволят нам из конфигурации, в которой присутствует допускающее состояние , получить уникальное слово. Это необходимо, чтобы мы смогли построить критерий в терминах полуситсемы Туэ того, что из стартовой конфигураций наша программа корректно завершается. Имеем следующие правила:
Имея этот набор правил можем составить упомянутый выше критерий: программа корректно завершиться на данном на ленте входном слове для . , если в построенной полусистеме . Таким образом из разрешимости этой задачи следовала бы разрешимость задачи останова. Соответсвенно задача о выводе в полусистеме Туэ алгоритмически неразрешима. |