Статические выпуклые оболочки: Джарвис, Грэхем, Эндрю, Чен, QuickHull — различия между версиями
Yurik (обсуждение | вклад) (→Алгоритм Джарвиса) |
Yurik (обсуждение | вклад) (→Алгоритм Грэхема) |
||
| Строка 69: | Строка 69: | ||
Сортировка точек занимает <tex>O(n log n)</tex> времени. При обходе каждая точка добавляется в ответ не более одного раза, поэтому сложность этой части - <tex>O(n)</tex>. Суммарное время - <tex>O(n log n)</tex>. | Сортировка точек занимает <tex>O(n log n)</tex> времени. При обходе каждая точка добавляется в ответ не более одного раза, поэтому сложность этой части - <tex>O(n)</tex>. Суммарное время - <tex>O(n log n)</tex>. | ||
| + | |||
| + | |||
| + | = Алгоритм = | ||
| + | |||
| + | == Описание Алгоритма == | ||
| + | |||
| + | == Корректность == | ||
| + | |||
| + | == Псевдокод == | ||
| + | |||
| + | == Сложность == | ||
| + | |||
| + | == Ссылки == | ||
| + | |||
| + | * [http://en.wikipedia.org/wiki/Gift_wrapping_algorithm Английская статья — Wikipedia] | ||
| + | * [http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%94%D0%B6%D0%B0%D1%80%D0%B2%D0%B8%D1%81%D0%B0 Русская статья — Wikipedia] | ||
= Алгоритм Эндрю = | = Алгоритм Эндрю = | ||
= Алгоритм Чена = | = Алгоритм Чена = | ||
= Алгоритм QuickHull = | = Алгоритм QuickHull = | ||
Версия 11:51, 16 января 2014
| Конспект не готов. |
Ниже приводятся основные алгоритмы построения выпуклых оболочек статического множества. Используются обозначения: - размер входных данных, - размер оболочки.
Содержание
Алгоритм Джарвиса
По-другому "Gift wrapping algorithm" (Заворачивание подарка).
Описание Алгоритма
1) Возьмем самую правую нижнюю точку нашего множества. Добавляем ее в ответ.
2) На каждом следующем шаге для последнего добавленного ищем среди всех недобавленных точек и с максимальным полярным углом относительно (Если углы равны, надо сравнивать по расстоянию). Добавляем в ответ. Если , заканчиваем алгоритм.
Корректность
Точка , очевидно, принадлежит оболочке. На каждом последующем шаге алгоритма мы получаем прямую , по построению которой все точки множества лежат слева от нее. Значит, выпуклая оболочка состоит из -ых и только из них.
Псевдокод
Inplace-реализация алгоритма. - исходное множество.
Jarvis(S)
find i such that S[i] has the lowest y-coordinate and highest x-coordinate
p0 = S[i]
pi = p0
k = 0
do
k++
for i = k..n
if S[i] has lower angle and higher distance than S[k] in relation to pi
swap(S[i], S[k])
pi = S[k]
while pi != p0
return k
Сложность
Добавление каждой точки в ответ занимает времени, всего точек будет , поэтому итоговая сложность .
Ссылки
Алгоритм Грэхема
Описание Алгоритма
1)Находим самую правую нижнюю точку множества , добавляем в ответ. 2)Сортируем все остальные точки по полярному углу относительно . 3)Добавляем в ответ - самую первую из отсортированных точек. 4)Берем следующую по счету точку в массиве . Пока и две последних точке в ответе образуют неправый поворот, удаляем из ответа последнюю точку. 5)Делаем п.4, пока не закончатся точки.
Корректность
Псевдокод
Подаем в функцию исходное множество S, возвращаем позицию - в будет хранится наша оболочка. - модифицированная функция поворота, учитывающая случай, когда точки лежат на одной прямой.
Сложность
Сортировка точек занимает времени. При обходе каждая точка добавляется в ответ не более одного раза, поэтому сложность этой части - . Суммарное время - .