Статические выпуклые оболочки: Джарвис, Грэхем, Эндрю, Чен, QuickHull — различия между версиями
Yurik (обсуждение | вклад) (→Алгоритм QuickHull) |
Yurik (обсуждение | вклад) (→Псевдокод) |
||
| Строка 160: | Строка 160: | ||
== Псевдокод == | == Псевдокод == | ||
| + | Inplace-реализация алгоритма. <tex>S[1..n]</tex> - исходное множество. <tex>quick_hull()</tex> - рекурсивная функция, находящая оболочку подмножества <tex>S</tex>. В реализации в конце каждого подмножества находятся эл-ты, точно не принадлежащие оболочке. | ||
| + | QuickHull(S) | ||
| + | find i such that S[i] has the highest x-coordinate and lowest y-coordinate | ||
| + | swap(S[1], S[i]) | ||
| + | find i such that S[i] has the lowest x-coordinate and lowest y-coordinate | ||
| + | swap(S[n], S[i]) | ||
| + | k = partition1(S) // разбиваем на те эл-ты, которые лежат над прямой и на остальные | ||
| + | a = quick_hull(S, 1, k) | ||
| + | b = quick_hull(S, k + 1, n); | ||
| + | swap(S[a..k], S[k + 1, b]) | ||
| + | return start + (a - 1) + (b - k - 1) | ||
| + | |||
| + | quick_hull(S, start, end) | ||
| + | find i such that S[i], S[start], S[end] has maximum value | ||
| + | (a, b) = partition2(S, start, end, S[i]) //свапаем эл-ты S так, чтобы сначала были все эл-ты над прямой S[start]S[i], потом S[i]S[end], потом все остальное | ||
| + | c = quick_hull(S, start, a) | ||
| + | d = quick_hull(S, a + 1, b) | ||
| + | swap(S[c..a], S[a + 1..d]) | ||
| + | return start + (a - c) + (d - b) | ||
== Сложность == | == Сложность == | ||
Версия 16:45, 16 января 2014
| Конспект не готов. |
Ниже приводятся основные алгоритмы построения выпуклых оболочек статического множества. Используются обозначения: - размер входных данных, - размер оболочки.
Алгоритм Джарвиса
По-другому "Gift wrapping algorithm" (Заворачивание подарка).
Описание Алгоритма
1) Возьмем самую правую нижнюю точку нашего множества. Добавляем ее в ответ.
2) На каждом следующем шаге для последнего добавленного ищем среди всех недобавленных точек и с максимальным полярным углом относительно (Если углы равны, надо сравнивать по расстоянию). Добавляем в ответ. Если , заканчиваем алгоритм.
Корректность
Точка , очевидно, принадлежит оболочке. На каждом последующем шаге алгоритма мы получаем прямую , по построению которой все точки множества лежат слева от нее. Значит, выпуклая оболочка состоит из -ых и только из них.
Псевдокод
Inplace-реализация алгоритма. - исходное множество,
Jarvis(S)
find i such that S[i] has the lowest y-coordinate and highest x-coordinate
p0 = S[i]
pi = p0
k = 0
do
k++
for i = k..n
if S[i] has lower angle and higher distance than S[k] in relation to pi
swap(S[i], S[k])
pi = S[k]
while pi != p0
return k
Сложность
Добавление каждой точки в ответ занимает времени, всего точек будет , поэтому итоговая сложность .
Ссылки
Алгоритм Грэхема
Описание Алгоритма
1)Находим самую правую нижнюю точку множества , добавляем в ответ.
2)Сортируем все остальные точки по полярному углу относительно .
3)Добавляем в ответ - самую первую из отсортированных точек.
4)Берем следующую по счету точку . Пока и две последних точки в текущей оболочке и образуют неправый поворот, удаляем из оболочки .
5)Добавляем в оболочку .
6)Делаем п.5, пока не закончатся точки.
Корректность
| Конспект не готов. |
Докажем, что на каждом шаге множество -тых является выпуклой оболочкой всех уже рассмотренных точек. Доказательство проведем по индукции.
1)База. Для трех первых точек утверждение, очевидно, выполняется.
2)Переход. Предположим от противного, что утверждение на -м шаге перестает выполняться. Тогда существует два варианта:
- В нашей оболочке есть лишние точки.
Этого не может быть, так как на каждом шаге мы добавляем ровно одну точку, которая точно входит в оболочку, так как имеет наибольший полярный угол среди всех остальных.
- В нашей оболочке нет каких-то точек, которые есть в настоящей.
Удаляем мы только те
Псевдокод
Inplace-реализация алгоритма. - исходное множество,
Graham(S)
find i such that S[i] has the lowest y-coordinate and highest x-coordinate
swap(S[i], S[1])
sort S[2..n] by angle in relation to S[1]
k = 2
for p = 3..n
while S[k - 1], S[k], S[p] has non-right orientation
k--
swap(S[p], S[k + 1])
return k
Сложность
Сортировка точек занимает времени. При обходе каждая точка добавляется в ответ не более одного раза, поэтому сложность этой части - . Суммарное время - .
Ссылки
Алгоритм
Описание Алгоритма
Корректность
Псевдокод
Сложность
Ссылки
Алгоритм Чена
Алгоритм QuickHull
Описание Алгоритма
1)Найдем самую левую нижнюю точку и самую правую нижнюю точку .
2)Возьмем все точки выше прямой .
3)Найдем среди этого множества точку , наиболее отдаленную от прямой (если таких несколько, взять самую правую).
4)Рекурсивно повторить шаги 2-3 для прямых и , пока есть точки.
5)Добавить в ответ точки , полученные в п. 3.
6)Повторить пункты 2-5 для (то есть для "нижней" половины).
7)Ответ - объединение списков из п. 5 для верхней и нижней половины.
Корректность
Очевидно, что выпуклая оболочка всего множества является объединением выпуклых оболочек для верхнего и нижнего множества. Докажем, что алгоритм верно строит оболочку для верхнего множества, для правого рассуждения аналогичны. Точки и принадлежат оболочке.
- Пусть какая-то точка входит в нашу оболочку, но не должна.
Назовем эту точку . По алгоритму эта точка появилась как самая удаленная от некой прямой . Так как не входит в оболочку, то существует прямая из настоящей выпуклой оболочки, что лежит снизу от прямой. Тогда какая-то из и удалена от прямой дальше , что противоречит алгоритму.
- Наоборот, пусть какой-то точки в нашей оболочке нет, а должна быть.
Пойдем вниз рекурсии в те ветки, где есть . В какой-то момент окажется внутри некоторого треугольника. Но тогда возникает противоречие с тем, что принадлежит выпуклой оболочке - противоречие.
Таким образом, наша оболочка совпадает с истинной, а значит алгоритм корректен.
Псевдокод
Inplace-реализация алгоритма. - исходное множество. - рекурсивная функция, находящая оболочку подмножества . В реализации в конце каждого подмножества находятся эл-ты, точно не принадлежащие оболочке.
QuickHull(S) find i such that S[i] has the highest x-coordinate and lowest y-coordinate swap(S[1], S[i]) find i such that S[i] has the lowest x-coordinate and lowest y-coordinate swap(S[n], S[i]) k = partition1(S) // разбиваем на те эл-ты, которые лежат над прямой и на остальные a = quick_hull(S, 1, k) b = quick_hull(S, k + 1, n); swap(S[a..k], S[k + 1, b]) return start + (a - 1) + (b - k - 1)
quick_hull(S, start, end) find i such that S[i], S[start], S[end] has maximum value (a, b) = partition2(S, start, end, S[i]) //свапаем эл-ты S так, чтобы сначала были все эл-ты над прямой S[start]S[i], потом S[i]S[end], потом все остальное c = quick_hull(S, start, a) d = quick_hull(S, a + 1, b) swap(S[c..a], S[a + 1..d]) return start + (a - c) + (d - b)
Сложность
Пусть время, необходимое для нахождения оболочки над некой прямой и множеством точек есть Тогда , где - множества над полученными прямыми. Отсюда видно, что в худшем случае, алгоритм тратит . На рандомных же данных это число равно