Универсальная функция — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 6: Строка 6:
  
 
Аналогично определяется универсальная функция для класса всюду определенных вычислимых функций одного аргумента.
 
Аналогично определяется универсальная функция для класса всюду определенных вычислимых функций одного аргумента.
 +
 +
{{Теорема
 +
|statement=Существует универсальная функция
 +
|proof=Зафиксируем какой-либо язык программирования. Пусть программами на этом языке являются слова над алфавитом <tex>\Sigma</tex>. Программа будет иметь номер <tex>n</tex>, если ее код - <tex>n</tex>-е слово среди всех слов над алфавитом <tex>\Sigma</tex>, отсортированных сначала по возрастанию длины, а при равной длине - в лексикографическом порядке. При этом если <tex>n</tex>-я программа не компилируется, будем считать, что она всегда зависает. Рассмотрим функцию <tex>U(n,x):\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}\cup\perp</tex> такую, что <tex>U(n,x)=p_n(x)</tex>, где <tex>p_n</tex> - <tex>n</tex>-я программа. Заметим, что по определению вычислимой функции существует программа, вычисляющая ее. Но в заданной нумерации у любой программы есть номер. Таким образом для любой вычислимой функции <tex>f</tex> существует номер <tex>n: U(n,x)=f(x)</tex>. И наоборот - <tex>f_n=U(n)</tex> - является вычислимой функцией. Вычисляющая программа для <tex>U</tex> содержит интерпретатор для зафиксированного языка программирования, по номеру программы (первый аргумент) восстанавливает ее код, и передает ей второй аргумент, возвращая результат ее работы. Таким образом <tex>U_n(x)=U(n,x)</tex> - вычислима для любого <tex>n\in\mathbb{N}</tex>, и <tex>\forall f(x) \exists n\in\mathbb{N}: f(x)=U(n,x)</tex>, <tex>f(x)</tex> - вычислима, значит U(n,x) - универсальная функция.
 +
}}
 +
 +
 +
 
{{Теорема
 
{{Теорема
 
|statement = Для класса вычислимых функций одного аргумента существует вычислимая универсальная функция.
 
|statement = Для класса вычислимых функций одного аргумента существует вычислимая универсальная функция.

Версия 23:02, 16 января 2014

В этом разделе равенство двух вычислимых функций при заданных аргументах понимается в том смысле, что при этих аргументах вычисляющие программы для этих функций зависают, либо равны значения, возвращаемые ими.

Определение:
Функция [math]U : N \times N \rightarrow N \cup \lbrace \bot \rbrace[/math] называется универсальной (universal function) для класса вычислимых функций одного аргумента, если [math]\forall n \in N[/math] [math]U_n(x) = U(n, x)[/math] является вычислимой функцией и [math]\forall[/math] вычислимой функции [math]f[/math] [math]\exists n \in N : f(x) = U(n, x)[/math]

Менее формально, для универсальной функции должно выполняться следующее: "сечение" функции [math] U_n [/math] является вычислимой функцией и все вычислимые функции одного аргумента встречаются среди [math]U_n[/math] (отсюда универсальность). Универсальная функция нужна, например, для того, чтобы показать, что существует перечислимое неразрешимое множество (на самом деле это множество таких [math] n [/math], для которых [math] U(n, n) [/math] определено).

Аналогично определяется универсальная функция для класса всюду определенных вычислимых функций одного аргумента.

Теорема:
Существует универсальная функция
Доказательство:
[math]\triangleright[/math]
Зафиксируем какой-либо язык программирования. Пусть программами на этом языке являются слова над алфавитом [math]\Sigma[/math]. Программа будет иметь номер [math]n[/math], если ее код - [math]n[/math]-е слово среди всех слов над алфавитом [math]\Sigma[/math], отсортированных сначала по возрастанию длины, а при равной длине - в лексикографическом порядке. При этом если [math]n[/math]-я программа не компилируется, будем считать, что она всегда зависает. Рассмотрим функцию [math]U(n,x):\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}\cup\perp[/math] такую, что [math]U(n,x)=p_n(x)[/math], где [math]p_n[/math] - [math]n[/math]-я программа. Заметим, что по определению вычислимой функции существует программа, вычисляющая ее. Но в заданной нумерации у любой программы есть номер. Таким образом для любой вычислимой функции [math]f[/math] существует номер [math]n: U(n,x)=f(x)[/math]. И наоборот - [math]f_n=U(n)[/math] - является вычислимой функцией. Вычисляющая программа для [math]U[/math] содержит интерпретатор для зафиксированного языка программирования, по номеру программы (первый аргумент) восстанавливает ее код, и передает ей второй аргумент, возвращая результат ее работы. Таким образом [math]U_n(x)=U(n,x)[/math] - вычислима для любого [math]n\in\mathbb{N}[/math], и [math]\forall f(x) \exists n\in\mathbb{N}: f(x)=U(n,x)[/math], [math]f(x)[/math] - вычислима, значит U(n,x) - универсальная функция.
[math]\triangleleft[/math]


Теорема:
Для класса вычислимых функций одного аргумента существует вычислимая универсальная функция.
Доказательство:
[math]\triangleright[/math]
Занумеруем программы нашего языка натуральными числами. Рассмотрим функцию [math]U(n, x) = p_n(x)[/math], где [math]p_n[/math][math]n[/math]-ая программа в указанной нумерации. [math]\forall[/math] вычислимой функции [math]f[/math] [math]\exists n \in N : f(x) = p_n(x) = U(n, x)[/math]. [math]\forall n \in N[/math] [math]U_n(x) = U(n, x) = p_n(x)[/math], очевидно, является вычислимой функцией. Значит [math]U(n, x)[/math] — универсальная функция для класса вычислимых функций одного аргумента. Очевидно, что [math]U(n, x)[/math] вычислима. Действительно, для того, чтобы вычислить [math]U(n, x)[/math], достаточно вернуть вывод программы [math]p_n[/math] на входе [math]x[/math].
[math]\triangleleft[/math]
Теорема:
Для класса всюду определенных вычислимых функций одного аргумента не существует всюду определенной вычислимой универсальной функции.
Доказательство:
[math]\triangleright[/math]
От противного. Пусть [math]U(n, x)[/math] — всюду определенная вычислимая универсальная функция для класса всюду определенных вычислимых функций одного аргумента. Воспользуемся теперь диагональным методом. Рассмотрим всюду определенную вычислимую функцию одного аргумента [math]d(x) = U(x, x) + 1[/math]. [math]\exists n \in N : d(x) = U(n, x)[/math] в силу того, что [math]U(n, x)[/math] — универсальная для соответствующего класса функций. Так как [math]d(x)[/math] всюду определена, то она не зависает на аргументе [math]n[/math]. Значит [math]d(n) = U(n, n)[/math], но в то же время [math]d(n) = U(n, n) + 1[/math]. Противоречие.
[math]\triangleleft[/math]

Отметим, что функция [math]u(n) = U(n, n)[/math] называется диагональной (отсюда и пошло название метода).

Литература

Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999, с. 16

В. А. Успенский Лекции о вычислимых функциях — М.: ГИФМЛ, 1960, с. 203