К-d деревья и перечисление точек в произвольном прямоугольнике (статика) — различия между версиями
Gromak (обсуждение | вклад) (Новая страница: «{{ptready}} == Определение и построение == '''K-d дерево''' (short for k-dimensional tree) {{---}} статическая структ...») |
(нет различий)
|
Версия 13:07, 20 января 2014
Конспект написан не до конца, но основные вещи уже есть. |
Определение и построение
K-d дерево (short for k-dimensional tree) — статическая структура данных для хранения точек в
-мерном пространстве. Позволяет отвечать на запрос, какие точки лежат в данном прямоугольнике.Примечание: в книжке описывается двумерный вариант, и на лекциях, кажется, только он был, поэтому далее считается, что
. Обобщение на большую размерность достаточно просто додумать при необходимости.Строится это дерево следующим образом: разобьём все точки вертикальной прямой так, чтобы слева (нестрого) и справа (строго) от неё было примерно поровну точек (для этого посчитаем медиану первых координат). Получим подмножества для левого и правого ребёнка. Далее построим для этих подмножеств деревья, но разбивать будем уже не вертикальной, а горизонтальной прямой (для этого посчитаем медиану вторых координат). И так далее (раз считаем, что
, то на следующем уровне вновь будем разбивать вертикальными прямыми).Замечание: проблемы могут возникнуть, если много точек имеют одинаковую координату, тогда разбить примерно поровну не получится (почти все точки будут лежать на медиане и попадут в левую часть). Лучший способ борьбы с этим — не вспоминать о данной проблеме совсем. Но вообще с этим борются, используя composite numbers, то есть сравнивая ещё и по другой (другим) координате. Не думаю, что об этом нужно много писать.
Строить дерево будем рекурсивно с помощью функции
, принимающей множество точек и глубину. В зависимости от остатка при делении на размерность (в нашем случае от чётности) сплитим множество на два подмножества и делаем рекурсивные вызовы. Для лучшего понимания приведём псевдокод:
BuildKdTree(P, Depth) //Input. A set of points P and the current depth Depth. //Output. The root of a kd-tree storing P. if P contains only one point return a leaf storing this point else if depth is even Split P into two subsetsand with a vertical line through the median x-coordinate of the points in P else Split P into two subsets and with a horizontal line through the median y-coordinate of the points in P. <- BuildKdTree( , Depth + 1) <- BuildKdTree( , Depth + 1) Create a node v storing , make the left child of v, and make the right child of v. return v
Ссылки
- van Kreveld, de Berg, Overmars, Cheong — Computational Geometry. Algorithms and Applications. Страница 99.
- Английская Википедия
- Русская Википедия