ППЛГ и РСДС (PSLG и DCEL): определение, построение РСДС множества прямых — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Построение РСДС множества прямых)
Строка 47: Строка 47:
  
 
==Построение РСДС множества прямых==
 
==Построение РСДС множества прямых==
[[Файл:before.png|400px|thumb|left|было]]
+
[[Файл:before.png|200px|thumb|right|Было]]
 
[[Файл:next.png|400px|thumb|right|Добавляем жирную прямую. [a+b] это ребро, которое было в начальном face]]
 
[[Файл:next.png|400px|thumb|right|Добавляем жирную прямую. [a+b] это ребро, которое было в начальном face]]
  

Версия 23:01, 13 февраля 2014

Представление плоского графа с помощью РСДС
Плоский граф, ребрам которого придана произвольная ориентация для представления его с помощью РСДС. Стрелки вокруг вершин соответствуют указателям (P1, P2)
(а) РСДС, (б) входы по вершинам head_V [1..n] и (в) входы по граням head_F[1..l]

ППЛГ — Плоский прямолинейный граф.

РСДС — Реберный список с двойными связями.

ППЛГ

Планарный граф, уложенный на плоскости, принято называть плоским. Плоская укладка планарного графа [math]G = (V, E)[/math] — это отображение каждой вершины из [math]V[/math] в точку на плоскости, а каждого ребра из [math]E[/math] в простую линию, соединяющую пару образов концевых вершин этого ребра так, чтобы образы ребер пересекались только в своих концевых точках. Хорошо известно, что любой планарный граф можно уложить на плоскости так, чтобы все ребра отобразились в прямолинейные отрезки.

РСДС

Первое описание

Реберный список с двойными связями особенно удобен для представления ППЛГ. Пусть задан граф [math]G = (V, E)[/math], [math]V = \{v_1, v_2... v_n\}[/math], а [math]E = \{e_1, e_2... e_n\}[/math]. Главная компонента РСДС для планарного графа это реберный узел. Между ребрами графа и реберными узлами РСДС существует взаимно однозначное соответствие, т.е. каждое ребро представлено в РСДС ровно один раз. Реберный узел РСДС, соответствующий ребру графа, например, [math]e_k = \{v_1, v_2\} [/math] имеет 4 поля ([math]V1, V2, F1, F2[/math]) и 2 указателя ([math]P1, P2[/math]). Поле [math]V1[/math] содержит начало ребра, а поле [math]V2[/math] содержит его конец (так изначально неориентированное ребро получает условную ориентацию). Поля [math]F1[/math] и [math]F2[/math] содержат имена граней, лежащих слева и справа от ориентированного ребра ([math]v_1, v_2[/math]). Указатель [math]P1[/math] (соответственно [math]P2[/math]) задает реберный узел, содержащий первое ребро, встречаемое вслед за ребром ([math]v_1, v_2[/math]), при повороте от него против часовой стрелки вокруг [math]v_1[/math] (соответственно [math]v_2[/math]).

Ко второму описанию

Второе описание

РСДС состоит из 3 компонент:

  • Vertex — это точка сочленения. Содержит координаты точки. А также указатель на инцидентное ребро.
  • Face — содержит указатель на наружную компоненту (некоторое ребро на его границе). Для неограниченных поверхностей это nil. Так же содержит внутреннюю компоненту, которая есть указатель на некое ребро, с которого можно начать описывать внутреннюю область (опять же, может быть nil).
  • Half-edge — это ребро. Содержит указатели на точку, откуда исходит (origin), указатель на ребро близнец (twin)(направленное в другую сторону), инцидентную поверхность (incident_face), и указатели на следующее и предыдущие ребра.
struct vertex {
    x, y;
    half_edge *rep;  /* rep->origin == this */
};
struct face {
    outer_component *out;
    inner_components *in; (список какой-нибудь)
};
struct half_edge {
    half_edge *prev;     /* prev->next == this */
    half_edge *next;     /* next->prev == this */
    half_edge *twin;     /* twin->twin == this */
    vertex *origin;      /* twin->next->origin == origin &&
                            prev->twin->origin == origin */
    face *incident_face; /* prev->incident_face == incident_face && 
                            next->incident_face == incident_face */
};

Построение РСДС множества прямых

Было
Добавляем жирную прямую. [a+b] это ребро, которое было в начальном face

У нас есть множество прямых. Мы хотим представить это множество в виде РСДС.

Будем добавлять прямые по одной. Изначально у нас есть фэйс, который представляет собой всю плоскость. Алгоритм будет такой:

  • Локализовать рандомную точку прямой в face
  • Найти half-edge'и, которые пересекает эта прямая(их будет не больше 2, если считать пересечение в точке за одно ребро)
  • Разбить текущий face на два face1 и face2
    • Если пересечение не в точке, разбиваем ребра на два — a, b и c, d, так как пересечения два
    • Создаем два half-edge — отрезок прямой, попадающий в фэйс
    • Перекидываем ссылки этих half-edgeй как надо
    • Не забываем поменять у half-edgeй исходного face поле incident_face на face1 и face2 соответственно
  • Мы знаем куда(в какие фэйсы — edge->twin->incident_face) пошла наша прямая. Запускаемся от них и разбиваем их аналогично. Если пересечение было в точке, перебираем faceы(next_face = edge->prev->twin->incident_face), пока не найдем нужный. Если фэйс бесконечный — идем только в одну сторону

Вот эти ссылки надо не забыть поменять:

half_edge1->origin = A;
half_edge2->origin = B;

half_edge1->twin = half_edge2;
half_edge2->twin = half_edge1;
half_edge1->incident_face = face1;
half_edge2->incident_face = face2;

half_edge1->next = b;
b->prev = half_edge1;
half_edge1->prev = d;
d->next = half_edge1;

half_edge2->next = a;
a->prev = half_edge2;
half_edge2->prev = c;
c->next = half_edge2;

См. также

Более поясняющая статья.