Отношение вершинной двусвязности — различия между версиями
(→Вершинная двусвязность) |
(→Вершинная двусвязность) |
||
Строка 20: | Строка 20: | ||
Случай 1. Если среди всех указанных путей нет пересечений, то утверждение оказывается очевидным. | Случай 1. Если среди всех указанных путей нет пересечений, то утверждение оказывается очевидным. | ||
− | Случай 2. Пусть теперь наши пути будут пересекаться на некоторых последовательностях вершин и ребер между ними (будем называть их пересечениями). Будем называть пути, не содержащие пересечений или ребер <math>u_1u_2</math> или <math>w_1w_2</math> разрешенными. Рассмотрим следующую процедуру. Найдем пересечение <math>I</math>, к которому из <math>v_1v_2</math> есть разрешенный путь. Сожмем <math>I</math> и <math>v_1v_2</math> в две вершины, а все разрешенные пути между ними сожмем в ребро. Назначим вместо <math>v_1v_2</math> получившееся ребро. Будем повторять процедуру, пока остаются пересечения. Последнее получившееся ребро вершинно двусвязно с <math>u_1u_2</math> и <math>w_1w_2</math> (иначе оказалось бы, что оно не было бы вершинно двусвязно с самым первым <math>v_1v_2< | + | Случай 2. Пусть теперь наши пути будут пересекаться на некоторых последовательностях вершин и ребер между ними (будем называть их пересечениями). Будем называть пути, не содержащие пересечений или ребер <math>u_1u_2</math> или <math>w_1w_2</math> разрешенными. Рассмотрим следующую процедуру. Найдем пересечение <math>I</math>, к которому из <math>v_1v_2</math> есть разрешенный путь. Сожмем <math>I</math> и <math>v_1v_2</math> в две вершины, а все разрешенные пути между ними сожмем в ребро. Назначим вместо <math>v_1v_2</math> получившееся ребро. Будем повторять процедуру, пока остаются пересечения. Последнее получившееся ребро вершинно двусвязно с <math>u_1u_2</math> и <math>w_1w_2</math> (иначе оказалось бы, что оно не было бы вершинно двусвязно с самым первым <math>v_1v_2</math>). Мы свели ситуацию к Случаю 1. |
}} | }} | ||
Версия 12:20, 11 октября 2010
Вершинная двусвязность
Определение: |
Два ребра графа называются вершинно двусвязными, если существует два вершинно непересекающихся пути, попарно соединяющие их концы. |
Теорема: |
Отношение вершинной двусвязности является отношением эквивалентности на ребрах. |
Доказательство: |
Рефлексивность: В данном случае имеем 2 пустых пути, которые, очевидно, не пересекаются. Коммутативность: Следует из симметричности определения. Транзитивность: Пусть ребра , и , вершинно двусвязны, и , , , - пути, соединяющие их концы. По определению вершинной двусвязности и . Покажем, что между и также существует 2 вершинно непересекающихся пути.Случай 1. Если среди всех указанных путей нет пересечений, то утверждение оказывается очевидным. Случай 2. Пусть теперь наши пути будут пересекаться на некоторых последовательностях вершин и ребер между ними (будем называть их пересечениями). Будем называть пути, не содержащие пересечений или ребер или разрешенными. Рассмотрим следующую процедуру. Найдем пересечение , к которому из есть разрешенный путь. Сожмем и в две вершины, а все разрешенные пути между ними сожмем в ребро. Назначим вместо получившееся ребро. Будем повторять процедуру, пока остаются пересечения. Последнее получившееся ребро вершинно двусвязно с и (иначе оказалось бы, что оно не было бы вершинно двусвязно с самым первым ). Мы свели ситуацию к Случаю 1. |
Замечание. Рассмотрим следующее определение: вершины
и называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным.Блоки
Определение: |
Блоками, или компонентами вершинной двусвязности графа, называют его подграфы, множества ребер которых - классы эквивалентности вершинной двусвязности, а множества вершин - множества концов ребер из соответствующих классов. |
Точки сочленения
Определение: |
Точка сочленения графа | - вершина, принадлежащая как минимум двум блокам .
Определение: |
Точка сочленения графа | - вершина, при удалении которой в увеличивается число компонент связности.