Теорема Оре — различия между версиями
м |
|||
Строка 12: | Строка 12: | ||
Для вершин <math>\ u,v</math> выполнено <math>deg\ u + deg \ v \ge n.</math> | Для вершин <math>\ u,v</math> выполнено <math>deg\ u + deg \ v \ge n.</math> | ||
− | По принципу Дирихле | + | По принципу Дирихле всегда найдутся две смежные вершины <math>\ t_1,t_2</math> на пути <math>\ (u,v)</math> ,т.е. <math>\ u..t_1t_2..v</math> , такие, что существует ребро <math>\ ut_2</math> и ребро <math>\ t_1v.</math> |
Действительно, пусть <math>\ S = </math> { <math> i| e_i=ut_{i+1} \in EG</math> } и <math>\ T = </math> { <math> i| f_i=t_iv \in EG</math> } | Действительно, пусть <math>\ S = </math> { <math> i| e_i=ut_{i+1} \in EG</math> } и <math>\ T = </math> { <math> i| f_i=t_iv \in EG</math> } |
Версия 00:00, 12 октября 2010
Теорема: |
Если и для любых двух различных несмежных вершин и неориентированного графа G, то G - гамильтонов граф. |
Доказательство: |
Пусть, от противного, существует граф G, который удовлетворяет условию теоремы, но не является гамильтоновым графом. Будем добавлять к нему новые ребра до тех пор, пока не получим максимальный негамильтонов граф G'. В силу того, что мы только добавляли ребра, условие теоремы не нарушилось. Пусть несмежные вершины в полученном графе G'. Если добавить ребро , появится гамильтонов цикл. Тогда путь - гамильтонов.Для вершин выполненоПо принципу Дирихле всегда найдутся две смежные вершины на пути ,т.е. , такие, что существует ребро и реброДействительно, пусть { } и { }Имеем: , ноТогда Получили противоречие, т.к. т.е. и - гамильтонов цикл. |