Наивный алгоритм поиска подстроки в строке — различия между версиями
Shersh (обсуждение | вклад) (→Преимущества) |
Shersh (обсуждение | вклад) (→Псевдокод: небольшой рефакторинг псевдокода) |
||
Строка 7: | Строка 7: | ||
==Псевдокод== | ==Псевдокод== | ||
Приведем пример псевдокода, который находит все вхождения строки <tex>p</tex> в <tex>t</tex> и возвращает массив позиций, откуда начинаются вхождения. | Приведем пример псевдокода, который находит все вхождения строки <tex>p</tex> в <tex>t</tex> и возвращает массив позиций, откуда начинаются вхождения. | ||
− | '''vector<int>''' naiveStringMatcher('''string''' t, '''string''' p) | + | '''vector<int>''' naiveStringMatcher('''string''' t, '''string''' p): |
'''int''' n = t.length | '''int''' n = t.length | ||
'''int''' m = p.length | '''int''' m = p.length | ||
'''vector<int>''' ans | '''vector<int>''' ans | ||
− | '''for''' i = 1 | + | '''for''' i = 1 '''to''' n - m + 1: |
− | '''if''' t | + | '''if''' t[i..i + m - 1] == p[1..m]: |
ans.push_back(i) | ans.push_back(i) | ||
'''return''' ans | '''return''' ans |
Версия 11:34, 6 мая 2014
Постановка задачи
Имеются строки
и такие, что и элементы этих строк — символы из конечного алфавита . Говорят, что строка встречается в строке со сдвигом , если и Если строка встречается в строке , то является подстрокой . Требуется проверить, является ли строка подстрокой .Алгоритм
В наивном алгоритме поиск всех допустимых сдвигов производится с помощью цикла, в котором проверяется условие
для каждого из возможных значений .Псевдокод
Приведем пример псевдокода, который находит все вхождения строки
в и возвращает массив позиций, откуда начинаются вхождения.vector<int> naiveStringMatcher(string t, string p): int n = t.length int m = p.length vector<int> ans for i = 1 to n - m + 1: if t[i..i + m - 1] == p[1..m]: ans.push_back(i) return ans
Время работы
Алгоритм работает за
. В худшем случае что дает .Преимущества
- Требует памяти.
- Простая и понятная реализация.
- Если достаточно мало, по сравнению с , то тогда асимптотика получается близкой к . Поэтому этот алгоритм активно используется в браузерах (при использовании ), потому что обычно паттерн, который нужно найти очень короткий по сравнению с самим текстом. Также наивный алгоритм используется в стандартных библиотеках языков высокого уровня , потому что он не требует дополнительной памяти.
Литература
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ.[1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.