Сравнения, система вычетов, решение линейных систем по модулю — различия между версиями
Bochkarev (обсуждение | вклад) |
Bochkarev (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
<math>a \equiv b(mod \text{ } m)</math> <br><br> | <math>a \equiv b(mod \text{ } m)</math> <br><br> | ||
Сравнимость чисел '''a''' и '''b''' по модулю '''m''' равносильна: | Сравнимость чисел '''a''' и '''b''' по модулю '''m''' равносильна: | ||
− | *1. Возможности представить '''a''' в форме <tex>\Huge{a = b + mt}</tex>, где t - целое. | + | *1. Возможности представить '''a''' в форме <tex>\Huge{a = b + mt}</tex>, где t {{---}} целое. |
*2. Делимости <tex>\Huge{a - b}</tex> на '''m'''. | *2. Делимости <tex>\Huge{a - b}</tex> на '''m'''. | ||
== Арифметика сравнений == | == Арифметика сравнений == | ||
Строка 29: | Строка 29: | ||
называется '''наименьшим неотрицательным вычетом'''.<br><br> | называется '''наименьшим неотрицательным вычетом'''.<br><br> | ||
Любые '''m''' чисел, попарно несравнимые по модулю '''m''', образуют '''полную систему вычетов''' по этому модулю.<br><br> | Любые '''m''' чисел, попарно несравнимые по модулю '''m''', образуют '''полную систему вычетов''' по этому модулю.<br><br> | ||
− | Согласно 10 | + | Согласно 10 свойству сравнений, числа одного класса по модулю '''m''' имеют одинаковый [[Наибольший общий делитель|НОД]]. Особенно важны классы, содержащие числа, взаимно простые с модулем. Взяв вычет от каждого такого класса, получим '''приведенную систему вычетов''' по модулю '''m'''. |
== Решение линейных систем по модулю == | == Решение линейных систем по модулю == |
Версия 01:02, 12 октября 2010
Содержание
Сравнения по модулю
Будем рассматривать целые числа в связи с остатками от деления их на данное целое число m, которое назовем модулем.
Каждому целому числу отвечает определенный остаток от деления его на m. Если двум целым a и b отвечает один и тот же остаток r, то они называются сравнимыми по модулю m.
Сравнимость для a и b записывается так :
Сравнимость чисел a и b по модулю m равносильна:
- 1. Возможности представить a в форме , где t — целое.
- 2. Делимости на m.
Арифметика сравнений
Свойства сравнений
- 1. Два числа, сравнимые с третьим сравнимы между собой.
- 2. Сравнения можно почленно складывать.
- 3. Сравнения можно почленно перемножать.
- 4. Обе части сравнения можно разделить на их общий делитель, если последний взаимно прост с модулем.
- 5. Обе части сравнения можно умножить на одно и тоже число.
- 6. Обе части сравнения и модуль можно разделить на их общий делитель.
- 7. Если сравнение НОК этих модулей. имеет место по нескольким модулям, то оно имеет место и по модулю равному
- 8. Если сравнение имеет место по модулю m, то оно имеет место и по модулю d, равному любому делителю числа m.
- 9. Если одна часть сравнения и модуль делятся на некоторое число, то и другая сторона сравнения должна делится на это число.
- 10. Если , то .
Полная и приведенная система вычетов
Числа равноостаточные(сравнимые по модулю m) образуют класс чисел по модулю m.
Из такого определения следует, что всем числам класса отвечает один остаток r, и мы получим все числа класса,
если в форме
Любое число класса называется вычетом по модулю m. Вычет получаемый при , равный самому остатку r,
называется наименьшим неотрицательным вычетом.
Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.
Согласно 10 свойству сравнений, числа одного класса по модулю m имеют одинаковый НОД. Особенно важны классы, содержащие числа, взаимно простые с модулем. Взяв вычет от каждого такого класса, получим приведенную систему вычетов по модулю m.
Решение линейных систем по модулю
Пусть
Поиск решений:
,
Составим новое сравнение ,
обозначим его ,
его решением будет , где - числитель подходящей дроби.
Пусть
После этого решения исходного сравнения запишутся так :