Сравнения, система вычетов, решение линейных систем по модулю — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 5: Строка 5:
 
<tex>a \equiv b(mod \text{ } m)</tex> <br><br>
 
<tex>a \equiv b(mod \text{ } m)</tex> <br><br>
 
Сравнимость чисел '''a''' и '''b''' по модулю '''m''' равносильна:
 
Сравнимость чисел '''a''' и '''b''' по модулю '''m''' равносильна:
*1. Возможности представить '''a''' в форме <tex>\Huge{a = b + mt}</tex>, где t {{---}} целое.
+
*а. Возможности представить '''a''' в форме <tex>\Huge{a = b + mt}</tex>, где t {{---}} целое.
*2. Делимости <tex>\Huge{a - b}</tex> на '''m'''.
+
*б. Делимости <tex>\Huge{a - b}</tex> на '''m'''.
 
** Действительно, из <tex> a \equiv b(mod \text{ } m) </tex> следует <tex> a = mq + r, \text{  } b = mq_1 + r </tex>, откуда <tex> a - b = m(q-q_1)</tex>, и <tex> a = b + mt</tex>, где <tex> t = q - q_1</tex>.<br>
 
** Действительно, из <tex> a \equiv b(mod \text{ } m) </tex> следует <tex> a = mq + r, \text{  } b = mq_1 + r </tex>, откуда <tex> a - b = m(q-q_1)</tex>, и <tex> a = b + mt</tex>, где <tex> t = q - q_1</tex>.<br>
 
** Обратно, из <tex>\Huge{a = b + mt}</tex>, представляя '''b''' в форме <tex> b = mq_1 + r </tex>, выводим <tex> a = mq + r </tex>, где <tex> q = q_1 + t </tex>, значит <tex> a \equiv b(mod \text{ } m) </tex>.
 
** Обратно, из <tex>\Huge{a = b + mt}</tex>, представляя '''b''' в форме <tex> b = mq_1 + r </tex>, выводим <tex> a = mq + r </tex>, где <tex> q = q_1 + t </tex>, значит <tex> a \equiv b(mod \text{ } m) </tex>.
Строка 13: Строка 13:
 
=== Свойства сравнений ===
 
=== Свойства сравнений ===
 
*1. Два числа, сравнимые с третьим сравнимы между собой. <tex>a \equiv c(mod \text{ }m) \text{, } b \equiv c(mod \text{ }m) \Rightarrow a \equiv b(mod \text{ }m)</tex>
 
*1. Два числа, сравнимые с третьим сравнимы между собой. <tex>a \equiv c(mod \text{ }m) \text{, } b \equiv c(mod \text{ }m) \Rightarrow a \equiv b(mod \text{ }m)</tex>
 +
** Легко выводится из пункта "а".
 +
 
*2. Сравнения можно почленно складывать. <tex> a_1 + a_2 + a_3 \equiv b_1 + b_2 + b_3(mod \text{ }m)</tex>
 
*2. Сравнения можно почленно складывать. <tex> a_1 + a_2 + a_3 \equiv b_1 + b_2 + b_3(mod \text{ }m)</tex>
 +
** Представляем сравнения, как в пункте "а" и складываем.
 +
 
*3. Сравнения можно почленно перемножать. <tex> a_1a_2a_3 \equiv b_1b_2b_3(mod \text{ }m)</tex>
 
*3. Сравнения можно почленно перемножать. <tex> a_1a_2a_3 \equiv b_1b_2b_3(mod \text{ }m)</tex>
 +
** Представляем сравнения, как в пункте "а", перемножаем, получим <tex> a_1a_2a_3 = b_1b_2b_3+mN</tex>, где N{{---}}целое.
 +
 
*4. Обе части сравнения можно разделить на их общий делитель, если последний взаимно прост с модулем.
 
*4. Обе части сравнения можно разделить на их общий делитель, если последний взаимно прост с модулем.
 +
** Действительно, из <tex>a \equiv b(mod \text{ } m)</tex>, <tex> a = a_1d, b = b_1d, (d,m)=1</tex> следует, что <tex> a-b = (a_1 - b_1)d \vdots m </tex>, поэтому <tex> a_1 \equiv b_1(mod \text{ } m)</tex>.
 +
 
*5. Обе части сравнения можно умножить на одно и тоже число.
 
*5. Обе части сравнения можно умножить на одно и тоже число.
 
*6. Обе части сравнения и модуль можно разделить на их общий делитель.
 
*6. Обе части сравнения и модуль можно разделить на их общий делитель.

Версия 02:44, 12 октября 2010

Сравнения по модулю

Будем рассматривать целые числа в связи с остатками от деления их на данное целое число m, которое назовем модулем. Каждому целому числу отвечает определенный остаток от деления его на m. Если двум целым a и b отвечает один и тот же остаток r, то они называются сравнимыми по модулю m.

Сравнимость для a и b записывается так :
[math]a \equiv b(mod \text{ } m)[/math]

Сравнимость чисел a и b по модулю m равносильна:

  • а. Возможности представить a в форме [math]\Huge{a = b + mt}[/math], где t — целое.
  • б. Делимости [math]\Huge{a - b}[/math] на m.
    • Действительно, из [math] a \equiv b(mod \text{ } m) [/math] следует [math] a = mq + r, \text{ } b = mq_1 + r [/math], откуда [math] a - b = m(q-q_1)[/math], и [math] a = b + mt[/math], где [math] t = q - q_1[/math].
    • Обратно, из [math]\Huge{a = b + mt}[/math], представляя b в форме [math] b = mq_1 + r [/math], выводим [math] a = mq + r [/math], где [math] q = q_1 + t [/math], значит [math] a \equiv b(mod \text{ } m) [/math].

Арифметика сравнений

Свойства сравнений

  • 1. Два числа, сравнимые с третьим сравнимы между собой. [math]a \equiv c(mod \text{ }m) \text{, } b \equiv c(mod \text{ }m) \Rightarrow a \equiv b(mod \text{ }m)[/math]
    • Легко выводится из пункта "а".
  • 2. Сравнения можно почленно складывать. [math] a_1 + a_2 + a_3 \equiv b_1 + b_2 + b_3(mod \text{ }m)[/math]
    • Представляем сравнения, как в пункте "а" и складываем.
  • 3. Сравнения можно почленно перемножать. [math] a_1a_2a_3 \equiv b_1b_2b_3(mod \text{ }m)[/math]
    • Представляем сравнения, как в пункте "а", перемножаем, получим [math] a_1a_2a_3 = b_1b_2b_3+mN[/math], где N—целое.
  • 4. Обе части сравнения можно разделить на их общий делитель, если последний взаимно прост с модулем.
    • Действительно, из [math]a \equiv b(mod \text{ } m)[/math], [math] a = a_1d, b = b_1d, (d,m)=1[/math] следует, что [math] a-b = (a_1 - b_1)d \vdots m [/math], поэтому [math] a_1 \equiv b_1(mod \text{ } m)[/math].
  • 5. Обе части сравнения можно умножить на одно и тоже число.
  • 6. Обе части сравнения и модуль можно разделить на их общий делитель.
  • 7. Если сравнение [math]a\equiv b[/math] имеет место по нескольким модулям, то оно имеет место и по модулю равному НОК этих модулей.
  • 8. Если сравнение имеет место по модулю m, то оно имеет место и по модулю d, равному любому делителю числа m.
  • 9. Если одна часть сравнения и модуль делятся на некоторое число, то и другая сторона сравнения должна делится на это число.
  • 10. Если [math]a \equiv b(mod \text{ }m) [/math], то [math](a,m) = (b,m) [/math].


Полная и приведенная система вычетов

Числа равноостаточные(сравнимые по модулю m) образуют класс чисел по модулю m. Из такого определения следует, что всем числам класса отвечает один остаток r, и мы получим все числа класса, если в форме [math]mt + r [/math] заставим t пробегать все целые числа. Таким образом для каждого значения остатка имеется свой класс чисел.

Любое число класса называется вычетом по модулю m. Вычет получаемый при [math] t = 0[/math], равный самому остатку r, называется наименьшим неотрицательным вычетом.

Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.

Согласно 10 свойству сравнений, числа одного класса по модулю m имеют одинаковый НОД. Особенно важны классы, содержащие числа, взаимно простые с модулем. Взяв вычет от каждого такого класса, получим приведенную систему вычетов по модулю m.

Решение линейных систем по модулю

Пусть [math] (a, b) = d [/math]. Сравнение [math] ax \equiv b(mod \text{ }m)[/math] невозможно, если b не делится на d. При b, кратном d, сравнение имеет d решений.
Поиск решений:
[math] ax \equiv b(mod \text{ }m)[/math], [math] (a, b) = d [/math]
Составим новое сравнение [math] \frac{a}{d}x \equiv \frac{b}{d}(mod \text{ } \frac{m}{d})[/math], обозначим его [math] a_dx \equiv b_d(mod \text{ } m_d)[/math], его решением будет [math] x \equiv (-1)^{n-1}P_{n-1}b_d(mod \text{ } m_d)[/math], где [math] P_{n-1} [/math] - числитель подходящей дроби. Пусть [math] P = (-1)^{n-1}P_{n-1}b_d [/math]
После этого решения исходного сравнения запишутся так : [math] x \equiv P; P+m_d; P+2m_d; \ldots ;P+dm_d (mod \text{ }m)[/math]