Двойственный матроид — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 2: Строка 2:
 
|about=1
 
|about=1
 
|definition=
 
|definition=
'''Двойственный матроид к <tex> M = \; \langle X, B \rangle</tex>''' - это матроид <tex>M^* = \; \langle X, B^* \rangle</tex>, где <tex> B^* = \; ({\overline {\beta} |\; \beta \in \mathcal B})</tex> - множество всех кобаз матроида <tex>M.</tex>
+
'''Двойственный матроид к <tex> M = \; \langle X, B \rangle</tex>''' - это [[Определение_матроида | матроид]] <tex>M^* = \; \langle X, \mathcal B^* \rangle</tex>, где <tex> \mathcal B^* = \; \{ \overline B |\; B \in \mathcal B \} </tex> - множество всех кобаз матроида <tex>M.</tex>
 
}}
 
}}
 
{{Теорема
 
{{Теорема
|statement= Множество <tex>B^*</tex> удовлетворяет аксиомам баз.
+
|statement= Множество <tex>B^*</tex> удовлетворяет [[Аксиоматизация_матроида_базами | аксиомам баз]].
 
|proof=
 
|proof=
  
* 1. Пусть <tex>B_1, B_2 \in B.</tex> <tex>B_1 \subseteq B_2 \Leftrightarrow \overline {B_1} \supseteq \overline {B_2}.</tex> Тогда по первой аксиоме для <tex>B_{1,2} </tex> <tex>: \overline {B_2} = \overline {B_1}.</tex>
+
* 1. Пусть <tex>B_1, B_2 \in \mathcal B.</tex> <tex>B_1 \subseteq B_2 \Leftrightarrow \overline {B_1} \supseteq \overline {B_2}.</tex> Тогда по первой аксиоме для <tex>B_{1,2} </tex> <tex>: \overline {B_2} = \overline {B_1}.</tex>
* 2. Пусть <tex> \overline{B_1}, \overline {B_2} \in B^*</tex>  и  <tex> p\in \overline{B_1}.</tex> Так как <tex> p\notin {B_1},</tex> то в <tex> B_1 \cup p </tex> имеется точно один цикл <tex>C</tex>. Поскольку цикл <tex>C</tex> не лежит в <tex>B_2</tex>, существует <tex>q \in C \cap \overline {B_2}.</tex> Множество <tex>(B_1 \cup p) \setminus q</tex> не содержит циклов, т.к. разрушен единственный цикл. Поэтому оно независимо и <tex>|(B_1 \cup p) \setminus q| = |B_1|.</tex> Следовательно, <tex> (B_1 \cup p) \setminus q</tex> - база. Тогда <tex>\overline {(B_1 \cup p \setminus q)} = \overline {(B_1 \cup p)} \cup q = (\overline {B_1} \setminus p) \cup q,</tex> где <tex>q \in \overline {B_2}.</tex> То есть выполняется вторая аксиома баз.
+
* 2. Пусть <tex> \overline{B_1}, \overline {B_2} \in \mathcal B^*</tex>  и  <tex> p\in \overline{B_1}.</tex> Так как <tex> p\notin {B_1},</tex> то в <tex> B_1 \cup p </tex> имеется точно один цикл <tex>C</tex>. Поскольку цикл <tex>C</tex> не лежит в <tex>B_2</tex>, существует <tex>q \in C \cap \overline {B_2}.</tex> Множество <tex>(B_1 \cup p) \setminus q</tex> не содержит циклов, т.к. разрушен единственный цикл. Поэтому оно независимо и <tex>|(B_1 \cup p) \setminus q| = |B_1|.</tex> Следовательно, <tex> (B_1 \cup p) \setminus q</tex> - база. Тогда <tex>\overline {(B_1 \cup p \setminus q)} = \overline {(B_1 \cup p)} \cup q = (\overline {B_1} \setminus p) \cup q,</tex> где <tex>q \in \overline {B_2}.</tex> То есть выполняется вторая аксиома баз.
 
}}
 
}}
  

Версия 08:52, 22 мая 2014

Определение:
Двойственный матроид к [math] M = \; \langle X, B \rangle[/math] - это матроид [math]M^* = \; \langle X, \mathcal B^* \rangle[/math], где [math] \mathcal B^* = \; \{ \overline B |\; B \in \mathcal B \} [/math] - множество всех кобаз матроида [math]M.[/math]
Теорема:
Множество [math]B^*[/math] удовлетворяет аксиомам баз.
Доказательство:
[math]\triangleright[/math]
  • 1. Пусть [math]B_1, B_2 \in \mathcal B.[/math] [math]B_1 \subseteq B_2 \Leftrightarrow \overline {B_1} \supseteq \overline {B_2}.[/math] Тогда по первой аксиоме для [math]B_{1,2} [/math] [math]: \overline {B_2} = \overline {B_1}.[/math]
  • 2. Пусть [math] \overline{B_1}, \overline {B_2} \in \mathcal B^*[/math] и [math] p\in \overline{B_1}.[/math] Так как [math] p\notin {B_1},[/math] то в [math] B_1 \cup p [/math] имеется точно один цикл [math]C[/math]. Поскольку цикл [math]C[/math] не лежит в [math]B_2[/math], существует [math]q \in C \cap \overline {B_2}.[/math] Множество [math](B_1 \cup p) \setminus q[/math] не содержит циклов, т.к. разрушен единственный цикл. Поэтому оно независимо и [math]|(B_1 \cup p) \setminus q| = |B_1|.[/math] Следовательно, [math] (B_1 \cup p) \setminus q[/math] - база. Тогда [math]\overline {(B_1 \cup p \setminus q)} = \overline {(B_1 \cup p)} \cup q = (\overline {B_1} \setminus p) \cup q,[/math] где [math]q \in \overline {B_2}.[/math] То есть выполняется вторая аксиома баз.
[math]\triangleleft[/math]
Эта статья находится в разработке!


Определение:
Двойственный матроид к [math] M = \; \langle X, I \rangle[/math] - это матроид [math]M^* = \langle X, I^* \rangle[/math], где [math]I^* = \{A\ |\ \exists B \in \mathcal B, A \cap B = \varnothing\}[/math]


Теорема:
Определения 1 и 2 эквивалентны.
Доказательство:
[math]\triangleright[/math]

Положим [math] M^* = \; \langle X, I \rangle [/math]; [math] M_1^* = \; \langle X, I_1 \rangle [/math] - двойственный к нему матроид по первому определению, [math] M_2^* = \; \langle X, I_2 \rangle [/math] - по второму.

Требуется показать, что [math] I_1 = I_2 [/math]

  • [math] A \in I_1 \Rightarrow A \in I_2 [/math]
    Дополним [math] A [/math] до базы ([math] B [/math]). [math]B \in I_1 \Rightarrow \overline B \in I [/math]. Поскольку [math] B \cap \overline B = \varnothing [/math], то [math] B \in I_2 [/math]. Так как [math] A \in B [/math], то [math] A \cap \overline B = \varnothing [/math]
  • [math] A \in I_2 \Rightarrow A \in I_1 [/math]
    Возьмём [math] B: A \cap B = \varnothing [/math]. [math] \overline B \in I_1,\ I_2 [/math]. [math] A \in \overline B \Rightarrow A \in I_1[/math]
[math]\triangleleft[/math]

См.также