Алгоритм Тарьяна поиска LCA за О(1) в оффлайне — различия между версиями
Алесандр (обсуждение | вклад) |
Алесандр (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | Алгоритм Тарьяна позволяет находить наименьшего общего предка двух вершин в дереве, если все запросы известны заранее(offline). | + | Алгоритм Тарьяна позволяет находить наименьшего общего предка двух вершин в дереве, если все запросы известны заранее (offline). |
Каждый запрос к дереву - это 2 вершины <tex>v</tex>,<tex>u</tex> для которых нужно найти такую вершину <tex>k</tex>, что <tex>k</tex>-предок вершин <tex>v</tex> и <tex>u</tex>, и <tex>k</tex> имеет максимальную глубину из всех таких вершин. | Каждый запрос к дереву - это 2 вершины <tex>v</tex>,<tex>u</tex> для которых нужно найти такую вершину <tex>k</tex>, что <tex>k</tex>-предок вершин <tex>v</tex> и <tex>u</tex>, и <tex>k</tex> имеет максимальную глубину из всех таких вершин. | ||
− | Алгоритм позволяет найти ответы для дерева из n вершин и m запросов за время <tex>О(n + m)</tex>, т.е при достаточно большом m, за <tex>О(1)</tex> на запрос. | + | Алгоритм позволяет найти ответы для дерева из n вершин и m запросов за время <tex>О (n + m)</tex>, т.е при достаточно большом m, за <tex>О(1)</tex> на запрос. |
== Алгоритм == | == Алгоритм == | ||
Запустим обход в глубину из корня в течении которого мы найдём все ответы на наши запросы.Ответ для вершин v,u находится, когда мы уже посетели вершины u, а в v обработали всех сыновей и собираемся выйти из неё. | Запустим обход в глубину из корня в течении которого мы найдём все ответы на наши запросы.Ответ для вершин v,u находится, когда мы уже посетели вершины u, а в v обработали всех сыновей и собираемся выйти из неё. | ||
− | Зафиксируем момент, мы собираемся выйти из вершины v(обработали всех сыновей) и хотим узнать ответ для пары v,u. | + | |
− | Тогда заметим что ответ - это либо вершина v, либо какой-то её предок.Значит нам нужно найти предок вершины v, который является предком вершины u с наибольшей глубиной. Заметим, что при фиксированном v каждый из предков вершины v порождает некоторый класс вершин u, для которых он является ответом(в этом классе содержатся все вершины которые находятся "слева" от этого предка). | + | Зафиксируем момент, мы собираемся выйти из вершины v (обработали всех сыновей) и хотим узнать ответ для пары v,u. |
+ | Тогда заметим что ответ - это либо вершина v, либо какой-то её предок.Значит нам нужно найти предок вершины v, который является предком вершины u с наибольшей глубиной. Заметим, что при фиксированном v каждый из предков вершины v порождает некоторый класс вершин u, для которых он является ответом (в этом классе содержатся все вершины которые находятся "слева" от этого предка). | ||
На рисунке разные цвета-разные классы,а белые вершины ещё не просмотренные в dfs. | На рисунке разные цвета-разные классы,а белые вершины ещё не просмотренные в dfs. | ||
Классы этих вершин - не пересекаются,а значит мы их можем эффективно обрабаывать с помощью dsu. | Классы этих вершин - не пересекаются,а значит мы их можем эффективно обрабаывать с помощью dsu. | ||
Будем поддерживать массив ancestor[v] - представитель множества в котором содержится вершина v. | Будем поддерживать массив ancestor[v] - представитель множества в котором содержится вершина v. | ||
Для каждого класса мы образуем множество, и представителя этого множества. | Для каждого класса мы образуем множество, и представителя этого множества. | ||
− | Когда мы приходим в новую вершину v мы должны добавить её в новый класс(ancestor[v] = v),а когда просмотрим всё поддерево какого-то ребёнка, мы должны объеденить это поддерево с нашим классом(операция union), и не забыть установить представителя как вершину v(взависимости от реализации это может быть какая-то другая вершина). | + | Когда мы приходим в новую вершину v мы должны добавить её в новый класс (ancestor[v] = v),а когда просмотрим всё поддерево какого-то ребёнка, мы должны объеденить это поддерево с нашим классом (операция union), и не забыть установить представителя как вершину v (взависимости от реализации это может быть какая-то другая вершина). |
После того как мы обработали всех детей вершины v,мы можем ответить на все запросы вида (v,u) где u-уже посещённая вершина. | После того как мы обработали всех детей вершины v,мы можем ответить на все запросы вида (v,u) где u-уже посещённая вершина. | ||
Нетрудно заметить что ответ для lca(v,u) = ancestor(find(u)).Так же можно понять что для каждого запроса это условие(что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз. | Нетрудно заметить что ответ для lca(v,u) = ancestor(find(u)).Так же можно понять что для каждого запроса это условие(что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз. | ||
Строка 51: | Строка 52: | ||
=== Оценка сложности === | === Оценка сложности === | ||
Она состоит из нескольких оценок. | Она состоит из нескольких оценок. | ||
− | Во-первых dfs работает О(n). | + | Во-первых dfs работает О (n). |
− | Во-вторых, операции по объединению множеств, которые в сумме для всех разумных n затрачивают <tex>О(n)</tex> операций. | + | Во-вторых, операции по объединению множеств, которые в сумме для всех разумных n затрачивают <tex>О (n)</tex> операций. |
− | В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных n выполняется за <tex>О(1)</tex>. Итоговая асимптотика получается <tex>\mathrm{O(n + m)}</tex>, но при достаточно больших m ответ за <tex>О(1)</tex> на один запрос. | + | В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных n выполняется за <tex>О (1)</tex>. Итоговая асимптотика получается <tex>\mathrm{O (n + m)}</tex>, но при достаточно больших m ответ за <tex>О (1)</tex> на один запрос. |
Версия 00:29, 6 июня 2014
Алгоритм Тарьяна позволяет находить наименьшего общего предка двух вершин в дереве, если все запросы известны заранее (offline). Каждый запрос к дереву - это 2 вершины
, для которых нужно найти такую вершину , что -предок вершин и , и имеет максимальную глубину из всех таких вершин. Алгоритм позволяет найти ответы для дерева из n вершин и m запросов за время , т.е при достаточно большом m, за на запрос.Алгоритм
Запустим обход в глубину из корня в течении которого мы найдём все ответы на наши запросы.Ответ для вершин v,u находится, когда мы уже посетели вершины u, а в v обработали всех сыновей и собираемся выйти из неё.
Зафиксируем момент, мы собираемся выйти из вершины v (обработали всех сыновей) и хотим узнать ответ для пары v,u. Тогда заметим что ответ - это либо вершина v, либо какой-то её предок.Значит нам нужно найти предок вершины v, который является предком вершины u с наибольшей глубиной. Заметим, что при фиксированном v каждый из предков вершины v порождает некоторый класс вершин u, для которых он является ответом (в этом классе содержатся все вершины которые находятся "слева" от этого предка). На рисунке разные цвета-разные классы,а белые вершины ещё не просмотренные в dfs. Классы этих вершин - не пересекаются,а значит мы их можем эффективно обрабаывать с помощью dsu. Будем поддерживать массив ancestor[v] - представитель множества в котором содержится вершина v. Для каждого класса мы образуем множество, и представителя этого множества. Когда мы приходим в новую вершину v мы должны добавить её в новый класс (ancestor[v] = v),а когда просмотрим всё поддерево какого-то ребёнка, мы должны объеденить это поддерево с нашим классом (операция union), и не забыть установить представителя как вершину v (взависимости от реализации это может быть какая-то другая вершина). После того как мы обработали всех детей вершины v,мы можем ответить на все запросы вида (v,u) где u-уже посещённая вершина. Нетрудно заметить что ответ для lca(v,u) = ancestor(find(u)).Так же можно понять что для каждого запроса это условие(что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз.
Реализация
vector<bool> visited; vector<int> query[n]; int dsu_get (int v) { return v == dsu[v] ? v : dsu[v] = dsu_get (dsu[v]); } unite (int a, int b,int new_ancestor) { a = dsu_get (a); b = dsu_get (b); dsu[a] = b; ancestor[b] = new_ancestor; } dfs(int v) { visited[v] = true; for (u таких, что (v, u) — ребро в G) if (!visited[u]) dfs(u); union(v,u,v); for (i = 0; i < query[v].size(); i++) if (visited[query[v][i]]) cout << "LCA " << v << " " << u << " = " << ancestor[dsu_get(q[v][i])]; } int main() { dfs(0); return 0; }
Оценка сложности
Она состоит из нескольких оценок. Во-первых dfs работает О (n). Во-вторых, операции по объединению множеств, которые в сумме для всех разумных n затрачивают
операций. В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных n выполняется за . Итоговая асимптотика получается , но при достаточно больших m ответ за на один запрос.